Skip to main content
Log in

Sclerotium rolfsii lectin induces opposite effects on normal PBMCs and leukemic Molt-4 cells by recognising TF antigen and its variants as receptors

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sclerotium rolfsii lectin (SRL) exerts apoptotic effect against various cancer cells and an antitumor activity on mice with colon and breast cancer xenografts. The current study aimed to explore its exquisite carbohydrate specificity on human peripheral blood mononuclear cells (PBMCs) and leukemic T-cells. SRL, showed strong binding (>98%) to resting/activated PBMCs, leukemic Molt-4 and Jurkat cell lines. The glycans mediated binding to these cells was effectively blocked by mucin and fetuin, exhibiting 97% and 94% inhibition respectively. SRL showed mitogenic stimulation of PBMCs at 10 μg/ml as determined by thymidine incorporation assay. In contrast, lectin induced a dose dependent growth inhibition of Molt-4 cells with 58% inhibition at 25 μg/ml. Many common membrane receptors in activated PBMCs, Molt 4 and Jurkat cells were identified by lectin blotting. However, membrane receptors that are recognized by SRL in normal resting PBMCs were totally different and are high molecular weight glycoproteins. Treatment of membrane receptors with glycosidases prior to lectin probing, revealed that fucosylated Thomsen–Friedenreich(TF) antigen glycans are increasingly expressed on transformed Molt-4 leukemic cells compared to other cells. The findings highlight the opposite effects of SRL on transformed and normal hematopoietic cells by recognizing different glycan-receptors. SRL has promising potential for diagnostics and therapeutic applications in leukaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Couldrey, C., Green, J.E.: Metastases: the glycan connection. Breast Cancer Res. 2, 321–323 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glavey, S.V., Huynh, D., Reagan, M.R., et al.: The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev. 29, 269–279 (2015). https://doi.org/10.1016/j.blre.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  3. Vajaria, B.N., Patel, P.S.: Glycosylation: a hallmark of cancer? Glycoconj. J. 34, 147–156 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Varki A, Kannagi R, Toole B, Stanley P. Glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH,editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 47. 597-609 (2015)

  5. Poiroux, G., Barre, A., van Damme, E.J.M., et al.: Plant lectins targeting o-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int. J. Mol. Sci. 18, (2017). https://doi.org/10.3390/ijms18061232

    Article  PubMed Central  Google Scholar 

  6. Hashim, O.H., Jayapalan, J.J., Lee, C.-S.: Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ. 5, e3784 (2017). https://doi.org/10.7717/peerj.3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valentiner, U., Fabian, S., Schumacher, U., Leathem, A.J.: The influence of dietary lectins on the cell proliferation of human breast cancer cell lines in vitro. Anticancer Res. 23, 1197–1206 (2003)

    CAS  PubMed  Google Scholar 

  8. Ashraf, M.T., Khan, R.H.: Mitogenic lectins. Med. Sci. Monit. 9, RA265–RA269 (2003)

    PubMed  Google Scholar 

  9. Shanmugham, L.N., Castellani, M.L., Salini, V., Falasca, K., Vecchiet, J., Conti, P., Petrarca, C.: Relevance of plant lectins in human cell biology and immunology. Riv. Biol. 99, 227–249 (2006)

    PubMed  Google Scholar 

  10. Pujari, R., Nagre, N.N., Chachadi, V.B., et al.: Rhizoctonia bataticola lectin (RBL) induces mitogenesis and cytokine production in human PBMC via p38 MAPK and STAT-5 signaling pathways. Biochim. Biophys. Acta. 1800, 1268–1275 (2010). https://doi.org/10.1016/j.bbagen.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  11. Nagre, N.N., Chachadi, V.B., Sundaram, P.M., Naik, R.S., Pujari, R., Shastry, P., Swamy, B.M., Inamdar, S.R.: A potent mitogenic lectin from the mycelia of a phytopathogenic fungus, Rhizoctonia bataticola, with complex sugar specificity and cytotoxic effect on human ovarian cancer cells. Glycoconj. J. 27, 375–386 (2010). https://doi.org/10.1007/s10719-010-9285-2

    Article  CAS  PubMed  Google Scholar 

  12. Inamdar, S.R., Savanur, M.A., Eligar, S.M., Chachadi, V.B., Nagre, N.N., Chen, C., Barclays, M., Ingle, A., Mahajan, P., Borges, A., Shastry, P., Kalraiya, R.D., Swamy, B.M., Rhodes, J.M., Yu, L.G.: The TF-antigen binding lectin from Sclerotium rolfsii inhibits growth of human colon cancer cells by inducing apoptosis in vitro and suppresses tumor growth in vivo. Glycobiology. 22, 1227–1235 (2012). https://doi.org/10.1093/glycob/cws090

    Article  CAS  PubMed  Google Scholar 

  13. Eligar, S.M., Pujari, R., Swamy, B.M., Shastry, P., Inamdar, S.R.: Sclerotium rolfsii lectin inhibits proliferation and induces apoptosis in human ovarian cancer cell line PA-1. Cell Prolif. 45, 397–403 (2012). https://doi.org/10.1111/j.1365-2184.2012.00831.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savanur, M.A., Eligar, S.M., Pujari, R., Chen, C., Mahajan, P., Borges, A., Shastry, P., Ingle, A., Kalraiya, R.D., Swamy, B.M., Rhodes, J.M., Yu, L.G., Inamdar, S.R.: Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis. PLoS One. 9, e110107 (2014). https://doi.org/10.1371/journal.pone.0110107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh, R.S., Walia, A.K.: Microbial lectins and their prospective mitogenic potential. Crit. Rev. Microbiol. 40, 329–347 (2014). https://doi.org/10.3109/1040841X.2012.733680

    Article  CAS  PubMed  Google Scholar 

  16. Porras, F., Lascurain, R., Chavez, R., et al.: Isolation of the receptor for Amaranthus leucocarpus lectin from murine naive thymocytes. Glycobiology. 10, 459–465 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Gorocica, P., Lascurain, R., Hemandez, P., et al.: Isolation of the receptor for Amaranthus leucocarpus lectin from murine peritoneal macrophages. Glycoconj. J. 15, 809–814 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Solorzano, C., Bouquelet, S., Pereyra, M.A., et al.: Isolation and characterization of the potential receptor for wheat germ agglutinin from human neutrophils. Glycoconj. J. 23, 591–598 (2006). https://doi.org/10.1007/s10719-006-8635-6

    Article  CAS  PubMed  Google Scholar 

  19. Swamy, B.M., Bhat, A.G., Hegde, G.V., et al.: Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology. 14, 951–957 (2004). https://doi.org/10.1093/glycob/cwh130

    Article  CAS  PubMed  Google Scholar 

  20. Leonidas, D.D., Swamy, B.M., Hatzopoulos, G.N., Gonchigar, S.J., Chachadi, V.B., Inamdar, S.R., Zographos, S.E., Oikonomakos, N.G.: Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J. Mol. Biol. 368, 1145–1161 (2007). https://doi.org/10.1016/j.jmb.2007.02.092

    Article  CAS  PubMed  Google Scholar 

  21. Chachadi, V.B., Inamdar, S.R., Yu, L.-G., et al.: Exquisite binding specificity of Sclerotium rolfsii lectin toward TF-related O-linked mucin-type glycans. Glycoconj. J. 28, 49–56 (2011). https://doi.org/10.1007/s10719-011-9323-8

    Article  CAS  PubMed  Google Scholar 

  22. Anupama, S., Laha, P., Sharma, M., Pathak, K., Bane, S., Ingle, A.D., Gota, V., Kalraiya, R.D., Yu, L.G., Rhodes, J.M., Swamy, B.M., Inamdar, S.R.: Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice. Oncol. Rep. 37, 2803–2810 (2017). https://doi.org/10.3892/or.2017.5545

    Article  CAS  PubMed  Google Scholar 

  23. Goldman, P., Carter, J.H., Wheeler, L.A.: Mutagenesis within the gastrointestinal tract determined by histidine auxotrophs of Salmonella typhimurium. Cancer. 45, 1068–1072 (1980). https://doi.org/10.1002/1097-0142(19800315)45:5+<1068::aid-cncr2820451307>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  24. Duk, M., Lisowska, E., Wu, J.H., Wu, A.M.: The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 221, 266–272 (1994). https://doi.org/10.1006/abio.1994.1410

    Article  CAS  PubMed  Google Scholar 

  25. Pujari, R., Eligar, S.M., Kumar, N., et al.: Rhizoctonia bataticola lectin (RBL) induces caspase-8-mediated apoptosis in human T-cell leukemia cell lines but not in normal CD3 and CD34 positive cells. PLoS One. 8, e79311 (2013). https://doi.org/10.1371/journal.pone.0079311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wessel, D., Flugge, U.I.: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984)

    Article  CAS  PubMed  Google Scholar 

  27. Wu, A.M., Wu, J.H., Tsai, M.S., et al.: Carbohydrate specificity of a lectin isolated from the fungus Sclerotium rolfsii. Life Sci. 69, 2039–2050 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Yu, L.-G.: The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj. J. 24, 411–420 (2007). https://doi.org/10.1007/s10719-007-9034-3

    Article  CAS  PubMed  Google Scholar 

  29. Sindrewicz, P., Lian, L.-Y., Yu, L.-G.: Interaction of the oncofetal Thomsen-Friedenreich antigen with galectins in cancer progression and metastasis. Front. Oncol. 6, 79 (2016). https://doi.org/10.3389/fonc.2016.00079

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kolbl, A.C., Jeschke, U., Friese, K., Andergassen, U.: The role of TF- and Tn-antigens in breast cancer metastasis. Histol. Histopathol. 31, 613–621 (2016). https://doi.org/10.14670/HH-11-722

    Article  CAS  PubMed  Google Scholar 

  31. Li, F., Glinskii, O.V., Mooney, B.P., et al.: Cell surface Thomsen-Friedenreich proteome profiling of metastatic prostate cancer cells reveals potential link with cancer stem cell-like phenotype. Oncotarget. 8, 98598–98608 (2017). https://doi.org/10.18632/oncotarget.21985

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cao, Y., Karsten, U., Zerban, H., Bannasch, P.: Expression of MUC1, Thomsen-Friedenreich-related antigens, and cytokeratin 19 in human renal cell carcinomas and tubular clear cell lesions. Virchows Arch. 436, 119–126 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Yi, B., Zhang, M., Schwartz-Albiez, R., Cao, Y.: Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int. J. Oncol. 38, 1565–1573 (2011). https://doi.org/10.3892/ijo.2011.992

    Article  PubMed  Google Scholar 

  34. Yi, B., Zhang, Z., Zhang, M., Schwartz-Albiez, R., Cao, Y.: CD176 antiserum treatment leads to a therapeutic response in a murine model of leukemia. Oncol. Rep. 30, 1841–1847 (2013). https://doi.org/10.3892/or.2013.2639

    Article  CAS  PubMed  Google Scholar 

  35. Wu, A.M., Wu, J.H., Yang, Z., et al.: Differential contributions of recognition factors of two plant lectins -Amaranthus caudatus lectin and Arachis hypogea agglutinin, reacting with Thomsen-Friedenreich disaccharide (Galbeta1-3GalNAcalpha1-Ser/Thr). Biochimie. 90, 1769–1780 (2008). https://doi.org/10.1016/j.biochi.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  36. Cooper, H.S.: Reuter VE Peanut lectin-binding sites in polyps of the colon and rectum. Adenomas, hyperplastic polyps, and adenomas with in situ carcinoma. Lab. Investig. 49, 655–661 (1983)

    CAS  PubMed  Google Scholar 

  37. Orntoft, T.F., Mors, N.P., Eriksen, G., Jacobsen, N.O., Poulsen, H.S.: Comparative immunoperoxidase demonstration of T-antigens in human colorectal carcinomas and morphologically abnormal mucosa. Cancer Res. 45, 447–452 (1985)

    CAS  PubMed  Google Scholar 

  38. Sumar, N., Bodman, K.B., Rademacher, T.W., et al.: Analysis of glycosylation changes in IgG using lectins. J. Immunol. Methods. 131, 127–136 (1990)

    Article  CAS  PubMed  Google Scholar 

  39. Yu, L.G., Fernig, D.G., White, M.R., et al.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999)

    Article  CAS  PubMed  Google Scholar 

  40. Itzkowitz, S.H., Yuan, M., Montgomery, C.K., Kjeldsen, T., Takahashi, H.K., Bigbee, W.L., Kim, Y.S.: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49, 197–204 (1989)

    CAS  PubMed  Google Scholar 

  41. Stein, R., Chen, S., Grossman, W., Goldenberg, D.M.: Human lung carcinoma monoclonal antibody specific for the Thomsen-Friedenreich antigen. Cancer Res. 49, 32–37 (1989)

    CAS  PubMed  Google Scholar 

  42. Baldus, S.E., Zirbes, T.K., Glossmann, J., Fromm, S., Hanisch, F.G., Mönig, S.P., Schröder, W., Schneider, P.M., Flucke, U., Karsten, U., Thiele, J., Hölscher, A.H., Dienes, H.P.: Immunoreactivity of monoclonal antibody BW835 represents a marker of progression and prognosis in early gastric cancer. Oncology. 61, 147–155 (2001). https://doi.org/10.1159/000055366

    Article  CAS  PubMed  Google Scholar 

  43. Baldus, S.E., Zirbes, T.K., Hanisch, F.G., Kunze, D., Shafizadeh, S.T., Nolden, S., Mönig, S.P., Schneider, P.M., Karsten, U., Thiele, J., Hölscher, A.H., Dienes, H.P.: Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: a clinicopathologic study of 264 patients. Cancer. 88, 1536–1543 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Kurtenkov, O., Klaamas, K., Rittenhouse-Olson, K., Vahter, L., Sergejev, B., Miljukhina, L., Shljapnikova, L.: IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, alphaGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp. Oncol. 27, 136–140 (2005)

    CAS  PubMed  Google Scholar 

  45. Kawagishi, H., Nomura, A., Mizuno, T., Kimura, A., Chiba, S.: Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta. 1034, 247–252 (1990)

    Article  CAS  PubMed  Google Scholar 

  46. Yu, L., Fernig, D.G., Smith, J.A., Milton, J.D., Rhodes, J.M.: Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 53, 4627–4632 (1993)

    CAS  PubMed  Google Scholar 

  47. Mahajan, R.G., Patil, S.I., Mohan, D.R.K., Shastry, P.: Pleurotus Eous mushroom lectin (PEL) with mixed carbohydrate inhibition and antiproliferative activity on tumor cell lines. J. Biochem. Mol. Biol. Biophys. 6, 341–345 (2002). https://doi.org/10.1080/1025814021000008558

    Article  CAS  PubMed  Google Scholar 

  48. Wang, H.X., Ng, T.B., Liu, W.K., et al.: Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Pept. Protein Res. 46, 508–513 (1995)

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H., Gao, J., Ng, T.B.: A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 275, 810–816 (2000). https://doi.org/10.1006/bbrc.2000.3373

    Article  CAS  PubMed  Google Scholar 

  50. Wang, H., Ng, T.B., Liu, Q.: A novel lectin from the wild mushroom Polyporus adusta. Biochem. Biophys. Res. Commun. 307, 535–539 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. Ngai, P.H.K., Ng, T.B.: A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem. Biophys. Res. Commun. 314, 988–993 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. Singh Bains, J., Singh, J., Kamboj, S.S., Nijjar, K.K., Agrewala, J.N., Kumar, V., Kumar, A., Saxena, A.K.: Mitogenic and anti-proliferative activity of a lectin from the tubers of Voodoo lily (Sauromatum venosum). Biochim. Biophys. Acta. 1723, 163–174 (2005). https://doi.org/10.1016/j.bbagen.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  53. Nicolson, G.L.: Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim. Biophys. Acta. 458, 1–72 (1976)

    CAS  PubMed  Google Scholar 

  54. Speckart, S.F., Boldt, D.H., MacDermott, R.P.: Chronic lymphatic leukemia (CLL): cell surface changes detected by lectin binding and their relation to altered glycosyltransferase activity. Blood. 52, 681–695 (1978)

    Article  CAS  PubMed  Google Scholar 

  55. Endo, Y., Kobata, A.: Partial purification and characterization of an endo-alpha-N-acetylgalactosaminidase from the culture of medium of Diplococcus pneumoniae. J. Biochem. 80, 1–8 (1976)

    Article  CAS  PubMed  Google Scholar 

  56. Dube, D.H., Bertozzi, C.R.: Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005). https://doi.org/10.1038/nrd1751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UGC-Start up grant (F.30-117/2015 (BSR)), University Grant Commission, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashikala R. Inamdar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachadi, V.B., Pujari, R., Shastry, P. et al. Sclerotium rolfsii lectin induces opposite effects on normal PBMCs and leukemic Molt-4 cells by recognising TF antigen and its variants as receptors. Glycoconj J 37, 251–261 (2020). https://doi.org/10.1007/s10719-019-09905-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09905-y

Keywords

Navigation