Skip to main content
Log in

Theoretical Investigation on the Elastic Properties, Bond Stiffness and Hardness of WX2 (X = B and N)

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

In this paper, we investigate the elastic properties, bond stiffness, hardness and Debye temperatures for hexagonal P63/mmc WX2 (X = B or N). It is observed that these two compounds are stable in mechanics. Both these two have three typical bonds, W-X bonds, X-X and W-W bonds. By investigating the bond stiffness of these three types of bonds, we found that the bulk modulus of WX2 is mainly determined by W-X and W-W bonds, while the shear modulus is mainly determined by X-X bonds. In addition, using a theoretical model, we evaluate the hardness of these two compounds. Results showed that the Vickers hardness of WN2 is much lower than that of WB2. What’s more, by calculating the Debye temperatures, we found the melting point of WN2 is much lower than WB2, and the overall chemical bonds in WB2 are stronger than that of WN2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Chung, H.-Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, M., Tolbert, S.H., and Kaner, R.B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.

    Article  CAS  Google Scholar 

  2. Chung, H.-Y., Weinberger, M.B., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2, Appl. Phys. Lett., 2008, vol, 92, no. 26, pp. 261904.

    Article  Google Scholar 

  3. Dubrovinskaia, N., Dubrovinsky, L., and Solozhenko, V.L., Comment on “synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Science, 2007, vol. 318, no. 5856, pp. 1550–1550.

    Article  Google Scholar 

  4. Chung, H.-Y., Weinberger, M.B., Levine, J.B., Cumberland, R.W., Kavner, A., Yang, J.-M., Tolbert, S.H., and Kaner, R.B., Response to comment on “synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure”, Science, 2007, vol. 318, no. 5856, pp. 1550–1550.

    Article  Google Scholar 

  5. Chiodo, S., Gotsis, H.J., Russo, N., and Sicilia, E., OsB2 and RuB2, ultra-incompressible, hard materials: First-principles electronic structure calculations, Chem. Phys. Lett, 2006, vol. 425, no. 4–6, pp. 311–314.

    Article  CAS  Google Scholar 

  6. Kiessling, R., The crystal structures of molybdenum and tungsten borides, Acta Chem. Scand., 1947, vol. 1, pp. 893–916.

    Article  CAS  Google Scholar 

  7. Hao, X.F., Xu, Y., Wu, Z., Zhou, D., Liu, X., Cao, X., and Meng, J., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B, 2006, vol. 74, no. 22, art. 224112.

  8. Yang, J., Sun, H., and Chen, C.F., Is osmium diboride an ultra-hard material?, J. Am. Chem. Soc., 2008, vol. 130, no. 23, pp. 7200–7201.

    Article  CAS  Google Scholar 

  9. Li, Q., Zhou, D., Zheng, W.T., Ma, Y.M., and Chen, C.F., Global structural optimization of tungsten borides, Phys. Rev. Lett., 2013, vol. 110, no. 13, art. 136403.

  10. Feng, S.Q., Guo, F., Li, J.Y., Wang, Y.Q., Zhang, L.M., and Cheng, X.L., Theoretical investigations of physical stability, electronic properties and hardness of transition-metal tungsten borides WBx (x = 2.5, 3), Chem. Phys. Lett., 2015, vol. 635, pp. 205–209.

    Article  CAS  Google Scholar 

  11. Feng, S.Q., Yang, Y., Li, J.Y., Jiang, X.X., Li, H.N., and Cheng, X.L., Pressure effect on the hardness of diamond and W2B5:First-principle calculations, Modern Phys. Lett. B, 2017, vol. 31, no. 12, pp. 1750137.

    Article  CAS  Google Scholar 

  12. Ordejón, P., Artacho, E., and Soler, J.M., Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B, 1996, vol. 53, no. 16, pp. R10441.

    Article  Google Scholar 

  13. Strobel, R., Maciejewski, M., Pratsinis, S.E., and Baiker, A., Unprecedented formation of metastable monoclinic BaCO3 nanoparticles, Therm. Acta, 2006, vol. 445, no. 1, pp. 23–26.

    Article  CAS  Google Scholar 

  14. Wu, Z.G. and Cohen, R.E., More accurate generalized gradient approximation for solids, Phys. Rev. B, 2006, vol. 73, no. 23, art. 2351161.

  15. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865.

    Article  CAS  Google Scholar 

  16. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integrations, Phys. Rev. B, 1976, vol. 13, no 12, pp. 5188–5192.

    Article  Google Scholar 

  17. Wu, Z., Zhao, E., Xiang, H., Hao, X., Liu, X., and Meng, J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, vol. 76, no. 5, art. 054115.

  18. Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Soc. London. A, 1952, vol. 65, pp. 349–349.

    Article  Google Scholar 

  19. Chen, X.Q., Fu, C.L., Krcmar, M., and Painter, G.S., Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB2 (M = W, Re, Os), Phys. Rev. Lett. 2008, vol. 100, no. 19, art. 196403.

  20. He, X.D., Bai, Y.L., Zhu, C.C., Sun, Y., Li, M.W., and Barsoum, M.W., General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study, Comput. Mater. Sci., 2010, vol. 49, no. 3, pp. 691–698.

    Article  CAS  Google Scholar 

  21. He, X.D., Bai, Y.L., Zhu, C.C., and Barsoum, M. W., Polymorphism of newly discovered Ti4GaC3: A first-principles study, Acta Mater., 2011, vol. 59, no. 14, pp. 5523–5533.

    Article  CAS  Google Scholar 

  22. Feng, S.Q., Li, X.D., Su, L., Li, H.N., Yang, H.Y., and Cheng, X.L., Ab initio study on structural, electronic properties, and hardness of re-doped W2B5, Solid. Stat. Commun., 2016, vol. 245, pp. 60–64.

    Article  CAS  Google Scholar 

  23. Tian, Y.J., Xu, B., and Zhao, Z.S., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. H., 2012, vol. 33, pp. 93–106.

    Article  CAS  Google Scholar 

  24. Zhong, M.M., Kuang, X.Y., Wang, Z.H., Shao, P., Ding, L.P., and Huang, X.F., Phase stability, physical properties, and hardness of transition-metal diborides MB2 (M = Tc,W, Re, and Os): First-principles investigations, J. Phys. Chem. C, 2013, vol. 117, no. 20, pp. 10643–10652.

    Article  CAS  Google Scholar 

  25. Gao, F.M., He, J.L., Wu, E.D., Liu, S.M., Yu, D.L., Li, D.C., Zhang, S.Y., and Tian, Y.J., Hardness of covalent crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, art. 015502.

  26. Clarke, D.R., Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat Technol., 2003, vol. 163, pp. 67–74.

    Article  Google Scholar 

Download references

Funding

Supported by the Key Research of Department Education of Henan Province (No. 17A140030), the cultivation project of young backbone teachers of Henan Province (2019GGJS137) and the Doctoral Fund of Zhengzhou University of Light Industry (2016XGGJS003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiming Tang or Shiquan Feng.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, J., Tang, C. et al. Theoretical Investigation on the Elastic Properties, Bond Stiffness and Hardness of WX2 (X = B and N). J. Superhard Mater. 41, 434–440 (2019). https://doi.org/10.3103/S1063457619060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457619060078

Keywords

Navigation