Skip to main content
Log in

Development of GK-2A AMI Aerosol Detection Algorithm in the East-Asia Region Using Himawari-8 AHI Data

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The GEO-KOMPSAT 2A (GK-2A) satellite is a next-generation geostationary meteorological satellite with multi-wavelength channels. The GK-2A Advanced Meteorological Imager (AMI) aerosol detection production (ADP) algorithm can detect aerosol types (e.g., dust, haze, volcanic ash), using visible and infrared channels. This algorithm is not employed in existing meteorological satellites and can detect four different aerosol types in the daytime and three at night. Here, cloud and aerosol detection were performed using Advanced Himawari Imager (AHI) data with channels similar to those of simulation data. Comparing the results with the Communication, Ocean and Meteorological Satellite (COMS) aerosol index (AI) and AHI RGB aerosol data revealed generally similar dust classification and excellent daytime haze and nighttime aerosol detection performances. Regarding detection of haze, dust, and undefined aerosols generated across East Asia, a percent correct (PC) of 0.76, probability of detection (POD) of 68%, and false alarm rate (FAR) of 33% were obtained for GK-2A ADP of dust when validated with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Vertical Feature Mask (VFM) aerosol type data. Furthermore, the detection performance was ≥87% for haze and undefined aerosols, and the FAR was <30%. When Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol optical depth (AOD) data were used for validation (with and without AOD), the POD was 0.66 (ocean) and 0.87 (land), while the FAR was 0.29 (ocean) and 0.35 (land). Thus, aerosol detection performances of GK-2A ADP are similar to those of existing satellites and superior to satellites that use limited optical channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADP:

Aerosol Detection Product

AI:

Aerosol Index

AOD:

Aerosol Optical Depth

AHI:

Advanced Himawari Imager

AMI:

Advanced Meteorological Imager

BT:

Brightness Temperature

CALIPSO:

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

COMS:

Communication, Ocean and Meteorological Satellite

FAR:

False Alarm Rate

GK-2A:

GEO-KOMPSAT 2A satellite

IR:

Infrared

MWIR:

Mid-wave Infrared

MODIS:

Moderate Resolution Imaging Spectroradiometer

PC:

Percent Correct

POD:

Probability Of Detection

RGB:

Red Green Blue

SWIR:

Shortwave Infrared

VFM:

Vertical Feature Mask

References

  • Ackerman, S.A.: Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks. Remote Sens. Environ. 27(2), 129–133 (1989)

    Article  Google Scholar 

  • Ackerman, S.A.: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. 102(D14), 17069–17079 (1997)

    Article  Google Scholar 

  • Ackerman, S.A., Strabala, K.I., Menzel, W.P., Frey, R.A., Moeller, C.C., Gumley, L.E.: Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103, 32141–32157 (1998)

    Article  Google Scholar 

  • Anton, H., Rorres, C.: Elementary Linear Algebra with Supplemental Applications, 11th edn, p. 592. Wiley (2013) ISBN 978-8126562961

  • Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 326(6114), 655–661 (1987)

    Article  Google Scholar 

  • Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Jeong, U., Kim, W., Hong, H., Holben, B., Eck, T.F., Song, C.H., Lim, J.-H., Song, C.-K.: GOCI Yonsei aerosol retrieval (YAER) algorithm and validation during the DRAGONNE Asia 2012 campaign. Atmospheric Measurement Techniques. 9(3), 1377–1398 (2016)

    Article  Google Scholar 

  • Ellrod, G.P., Connell, B.H., Hillger, D.W.: Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res. Atmos. 108(D12), 4356 (2003)

    Article  Google Scholar 

  • Fullerton, D.G., Bruce, N., Gordon, S.B.: Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans. R. Soc. Trop. Med. Hyg. 102(9), 843–851 (2008)

    Article  Google Scholar 

  • Gangale, G., Prata, A.J., Clarisse, L.: The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sens. Environ. 114(2), 414–425 (2010)

    Article  Google Scholar 

  • Gordon, H.R., Wang, M.: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt. 33(3), 443–452 (1994)

    Article  Google Scholar 

  • Hansell, R., Ou, S., Liou, K., Roskovensky, J., Tsay, S., Hsu, C., Ji, Q.: Simultaneous detection/separation of mineral dust and cirrus clouds using MODIS thermal infrared window data. Geophys. Res. Lett. 34(11), L11808 (2007)

    Article  Google Scholar 

  • Herman, J., Bhartia, P., Torres, O., Hsu, C., Seftor, C., Celarier, E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. Atmos. 102(D14), 16911–16922 (1997)

    Article  Google Scholar 

  • Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R.: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42(3), 557–569 (2004)

    Article  Google Scholar 

  • Jethva, H., Torres, O., Remer, L.A., Bhartia, P.K.: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: application to MODIS measurements. IEEE Trans. Geosci. Remote Sens. 51(7), 3862–3870 (2013)

    Article  Google Scholar 

  • Kaufman, Y.J., Tanre, D., Gordon, H.R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B.M., King, M.D., Teillet, P.M.: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. 102(D14), 16815–16830 (1997)

    Article  Google Scholar 

  • Kaufman, Y.J., Tanre, D., Boucher, O.: A satellite view of aerosols in the climate system. Nature. 419, 215–223 (2002)

    Article  Google Scholar 

  • Kim, J., Yoon, J.M., Ahn, M., Sohn, B., Lim, H.: Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. Int. J. Remote Sens. 29(21), 6181–6192 (2008)

    Article  Google Scholar 

  • Kim, M., Kim, J., Wong, M.S., Yoon, J., Lee, J., Wu, D., Chan, P., Nichol, J.E., Chung, C.-Y., Ou, M.-L.: Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ. 142, 176–187 (2014)

    Article  Google Scholar 

  • King, M.D., Kaufman, Y.J., Tanré, D., Nakajima, T.: Remote sensing of tropospheric aerosols from space: past, present, and future. Bull. Am. Meteorol. Soc. 80(11), 2229–2259 (1999)

    Article  Google Scholar 

  • Knapp, K., Frouin, R., Kondragunta, S., Prados, A.: Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. Int. J. Remote Sens. 26(18), 4097–4116 (2005)

    Article  Google Scholar 

  • Lau, K.M., Kim, K.M.: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 33(21), L21810 (2006). https://doi.org/10.1029/2006GL027546

  • Lee, K.H., Kim, Y.J.: Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days. Atmospheric Measurement Techniques. 3(6), 1771 (2010)

    Article  Google Scholar 

  • Lee, K.H., Kim, Y.J., von Hoyningen-Huene, W.: Estimation of aerosol optical thickness over Northeast Asia from sea-viewing wide field-of-view sensor (SeaWiFS) data during the 2001 ACE-Asia intensive observation period. J. Geophys. Res. Atmos. 109(D19), (2004)

  • Lee, K.H., Li, Z., Kim, Y.J., Kokhanovsky, A.: Atmospheric aerosol monitoring from satellite observations: a history of three decades. In: Atmospheric and Biological Environmental Monitoring, pp. 13–38. Springer (2009)

  • Lee, J., Kim, J., Song, C.H., Ryu, J.H., Ahn, Y.H., Song, C.K.: Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean color imager. Remote Sens. Environ. 114(5), 1077–1088 (2010)

    Article  Google Scholar 

  • Lee, K.H., Ryu, J.H., Ahn, J.H., Kim, Y.J.: First retrieval of data regarding spatial distribution of Asian dust aerosol from the Geostationary Ocean color imager. Ocean Science Journal. 47(4), 465–472 (2012)

    Article  Google Scholar 

  • Lee, K.H., Wong, M.S., Chung, S.-R., Sohn, E.: Improved volcanic ash detection based on a hybrid reverse absorption technique. Atmos. Res. 143, 31–42 (2014)

    Article  Google Scholar 

  • Lee, K.H., Lee, K.T., Chung, S.R.: Time-resolved observation of volcanic ash using COMS/MI: a case study from the 2011 Shinmoedake eruption. Remote Sens. Environ. 173, 122–132 (2016)

    Article  Google Scholar 

  • NOAA NESDIS/STAR. ABI aerosol detection product, Version 2.0, Sep. 30, 2010 (2010)

  • Prata, A.: Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data. Int. J. Remote Sens. 10(4-5), 751–761 (1989)

    Article  Google Scholar 

  • Ramanathan, V., Crutzen, P., Kiehl, J., Rosenfeld, D.: Aerosols, climate, and the hydrological cycle. Science. 294(5549), 2119–2124 (2001)

    Article  Google Scholar 

  • Rao, N.C., Stowe, L., McClain, E.: Remote sensing of aerosols over the oceans using AVHRR data theory, practice and applications. Int. J. Remote Sens. 10(4-5), 743–749 (1989)

    Article  Google Scholar 

  • Remer, L.A., Kaufman, Y., Tanré, D., Mattoo, S., Chu, D., Martins, J.V., Li, R.-R., Ichoku, C., Levy, R., Kleidman, R.: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 62(4), 947–973 (2005)

    Article  Google Scholar 

  • Rosenfeld, D.: Suppression of rain and snow by urban and industrial air pollution. Science. 287(5459), 1793–1796 (2000)

    Article  Google Scholar 

  • Roskovensky, J.K., Liou, K.N.: Differentiating airborne dust from cirrus clouds using MODIS data. Geophys. Res. Lett. 32, L12809 (2005). https://doi.org/10.1029/2005GLO022798

    Article  Google Scholar 

  • Someya, Y., Imasu, R., Saitoh, N., Ota, Y., Shiomi, K.: A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data. Atmos. Meas. Tech. 9, 1981–1992 (2016)

    Article  Google Scholar 

  • Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, B., Midgley, B.: IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working groupI to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp (2013). https://doi.org/10.1017/CBO9781107415324

    Book  Google Scholar 

  • Tanre, D., Legrand, M.: On the satellite retrieval of Saharan dust optical thickness over land: two different approaches. J. Geophys. Res. 96(D3), 5221–5227 (1991)

    Article  Google Scholar 

  • Torres, O., Jethva, H., Bhartia, P.: Retrieval of aerosol optical depth above clouds from OMI observations: sensitivity analysis and case studies. J. Atmos. Sci. 69(3), 1037–1053 (2012)

    Article  Google Scholar 

  • Vaughan, M.A., Powell, K.A., Winker, D.M., Hostetler, C.A., Kuehn, R.E., Hunt, W.H., Getzewich, B.J., Young, S.A., Liu, Z., McGill, M.J.: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Ocean. Technol. 26(10), 2034–2050 (2009)

    Article  Google Scholar 

  • Verge-Depre, G., Legrand, M., Moulin, C., Alias, A., Francois, P.: Improvement of the detection of desert dust over the Sahel using METEOSAT IR imagery. Ann. Geophys. 24, 2065–2073 (2006)

    Article  Google Scholar 

  • von Hoyningen-Huene, W., Freitag, M., Burrows, J.: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res. Atmos. 108(D9), 4260 (2003)

    Google Scholar 

  • Wong, M.S., Lee, K.-H., Nichol, J.E., Li, Z.: Retrieval of aerosol optical thickness using MODIS, a study in Hong Kong and the Pearl River Delta region. IEEE Trans. Geosci. Remote Sens. 48(8), 3318–3327 (2010)

    Article  Google Scholar 

  • Zhuge, X., Zou, X.: Test of a modified infrared-only ABI cloud mask algorithm for AHI radiance observations. J. Appl. Meteorol. Climatol. 55, 2529–2546 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Development of Radiation/Aerosol Algorithms” project, funded by ETRI, which is a subproject of the “Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2019-01)” program funded by the National Meteorological Satellite Center of the Korea Meteorological Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Bum Jee.

Additional information

Responsible Editor: Dong-Bin Shin.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jee, JB., Lee, KT., Lee, KH. et al. Development of GK-2A AMI Aerosol Detection Algorithm in the East-Asia Region Using Himawari-8 AHI Data. Asia-Pacific J Atmos Sci 56, 207–223 (2020). https://doi.org/10.1007/s13143-019-00156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-019-00156-3

Keywords

Navigation