Skip to main content

Advertisement

Log in

The Immunopathology of Complement Proteins and Innate Immunity in Autoimmune Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The complement is a powerful cascade of the innate immunity and also acts as a bridge between innate and acquired immune defence. Complement activation can occur via three distinct pathways, the classical, alternative and lectin pathways, each resulting in the common terminal pathway. Complement activation results in the release of a range of biologically active molecules that significantly contribute to immune surveillance and tissue homeostasis. Several soluble and membrane-bound regulatory proteins restrict complement activation in order to prevent complement-mediated autologous damage, consumption and exacerbated inflammation. The crucial role of complement in the host homeostasis is illustrated by association of both complement deficiency and overactivation with severe and life-threatening diseases. Autoantibodies targeting complement components have been described to alter expression and/or function of target protein resulting in a dysregulation of the delicate equilibrium between activation and inhibition of complement. The spectrum of diseases associated with complement autoantibodies depends on which complement protein and activation pathway are targeted, ranging from autoimmune disorders to kidney and vascular diseases. Nevertheless, these autoantibodies have been identified as differential biomarkers for diagnosis or follow-up of disease only in a small number of clinical conditions. For some autoantibodies, a clear relationship with clinical manifestations has been identified, such as anti-C1q, anti-Factor H, anti-C1 Inhibitor antibodies and C3 nephritic factor. For other autoantibodies, the origin and the functional consequences still remain to be elucidated, questioning about the pathophysiological significance of these autoantibodies, such as anti-mannose binding lectin, anti-Factor I, anti-Factor B and anti-C3b antibodies. The detection of autoantibodies targeting complement components is performed in specialized laboratories; however, there is no consensus on detection methods and standardization of the assays is a real challenge. This review summarizes the current panorama of autoantibodies targeting complement recognition proteins of the classical and lectin pathways, associated proteases, convertases, regulators and terminal components, with an emphasis on autoantibodies clearly involved in clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAE:

Acquired angioedema

Abs:

Antibodies

AE:

Angioedema

AP:

Alternative pathway

APS:

Anti-phospholipid syndrome

BD:

Behçet’s disease

C3GN:

C3 glomerulonephritis

C3GP:

C3 glomerulopathy

CP:

Classical pathway

CS:

Complement system

DDD:

Dense deposit disease

aHUS:

Atypical haemolytic uremic syndrome

HAE:

Hereditary angioedema

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HUV:

Hypocomplementemic urticarial vasculitis

HUVS:

Hypocomplementemic urticarial vasculitis syndrome

LN:

Lupus nephritis

LP:

Lectin pathway

MAC:

Membrane attack complex

MASP:

MBL-associated serine protease

MBL:

Mannose-binding lectin

MPGN:

Membranoproliferative glomerulonephritis

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

SS:

Sjögren syndrome

TP:

Terminal pathway

References

  1. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 6:262

    PubMed  PubMed Central  Google Scholar 

  2. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part II: role in immunity. Front Immunol. 6:257

    PubMed  PubMed Central  Google Scholar 

  3. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD (2012) Interactions between coagulation and complement—their role in inflammation. Semin Immunopathol. 34(1):151–165

    CAS  PubMed  Google Scholar 

  4. Conway EM (2015) Reincarnation of ancient links between coagulation and complement. J Thromb Haemost JTH. 13(Suppl 1):S121–S132

    CAS  PubMed  Google Scholar 

  5. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 28:131–155

    CAS  PubMed  Google Scholar 

  7. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol. 9(10):729–740

    CAS  PubMed  Google Scholar 

  8. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 11(9):785–797

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dragon-Durey M-A, Blanc C, Marinozzi MC, van Schaarenburg RA, Trouw LA (2013) Autoantibodies against complement components and functional consequences. Mol Immunol. 56(3):213–221

    CAS  PubMed  Google Scholar 

  10. Trouw LA, Roos A, Daha MR (2001) Autoantibodies to complement components. Mol Immunol. 38(2-3):199–206

    CAS  PubMed  Google Scholar 

  11. Dumestre-Pérard C, Clavarino G, Colliard S, Cesbron J-Y, Thielens NM (2018) Antibodies targeting circulating protective molecules in lupus nephritis: Interest as serological biomarkers. Autoimmun Rev. 17(9):890–899

    PubMed  Google Scholar 

  12. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ (2017) C1q: A fresh look upon an old molecule. Mol Immunol. 89:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Agnello V, Koffler D, Eisenberg JW, Winchester RJ, Kundel HG (1971) C1g precipitins in the sera of patients with systemic lupus erythematosus and other hypocomplementemic states: characterization of high and low molecular weight types. J Exp Med. 134(3 Pt 2):228 s-41 s

    Google Scholar 

  14. Potlukova E, Kralikova P (2008) Complement component c1q and anti-c1q antibodies in theory and in clinical practice. Scand J Immunol. 67(5):423–430

    CAS  PubMed  Google Scholar 

  15. Dema B, Charles N (2016) Autoantibodies in SLE: specificities, isotypes and receptors. Antibodies.:1–32

  16. Mahler M, van Schaarenburg RA, Trouw LA (2013) Anti-C1q autoantibodies, novel tests, and clinical consequences. Front Immunol. 4:117

    PubMed  PubMed Central  Google Scholar 

  17. Siegert CE, Daha MR, Tseng CM, Coremans IE, van Es LA, Breedveld FC (1993) Predictive value of IgG autoantibodies against C1q for nephritis in systemic lupus erythematosus. Ann Rheum Dis. 52(12):851–856

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Marto N, Bertolaccini ML, Calabuig E, Hughes GRV, Khamashta MA (2005) Anti-C1q antibodies in nephritis: correlation between titres and renal disease activity and positive predictive value in systemic lupus erythematosus. Ann Rheum Dis. 64(3):444–448

    CAS  PubMed  Google Scholar 

  19. Trendelenburg M, Lopez-Trascasa M, Potlukova E, Moll S, Regenass S, Frémeaux-Bacchi V et al (2006) High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol Dial Transplant. 21(11):3115–3121

    CAS  PubMed  Google Scholar 

  20. Kozyro I, Korosteleva L, Chernoshej D, Danner D, Sukalo A, Trendelenburg M (2008) Autoantibodies against complement C1q in acute post-streptococcal glomerulonephritis. Clin Immunol 128(3):409–414

    CAS  PubMed  Google Scholar 

  21. Vitkova H, Jiskra J, Springer D, Limanova Z, Telicka Z, Bartakova J et al (2016) Anti-C1q autoantibodies are linked to autoimmune thyroid disorders in pregnant women. Clin Exp Immunol. 186(1):10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Potlukova E, Jiskra J, Limanova Z, Kralikova P, Smutek D, Mareckova H et al (2008) Autoantibodies against complement C1q correlate with the thyroid function in patients with autoimmune thyroid disease. Clin Exp Immunol. 153(1):96–101

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oku K, Amengual O, Hisada R, Ohmura K, Nakagawa I, Watanabe T et al (2016) Autoantibodies against a complement component 1 q subcomponent contribute to complement activation and recurrent thrombosis/pregnancy morbidity in anti-phospholipid syndrome. Rheumatol Oxf Engl. 55(8):1403–1411

    CAS  Google Scholar 

  24. Siegert CE, Daha MR, Halma C, van der Voort EA, Breedveld FC (1992) IgG and IgA autoantibodies to C1q in systemic and renal diseases. Clin Exp Rheumatol. 10(1):19–23

    CAS  PubMed  Google Scholar 

  25. Braun A, Sis J, Max R, Mueller K, Fiehn C, Zeier M et al (2007) Anti-chromatin and anti-C1q antibodies in systemic lupus erythematosus compared to other systemic autoimmune diseases. Scand J Rheumatol. 36(4):291–298

    CAS  PubMed  Google Scholar 

  26. McDuffie FC, Sams WM, Maldonado JE, Andreini PH, Conn DL, Samayoa EA (1973) Hypocomplementemia with cutaneous vasculitis and arthritis. Possible immune complex syndrome. Mayo Clin Proc. 48(5):340–348

    CAS  PubMed  Google Scholar 

  27. Jachiet M, Flageul B, Deroux A, Le Quellec A, Maurier F, Cordoliani F et al (2015) The clinical spectrum and therapeutic management of hypocomplementemic urticarial vasculitis: data from a French nationwide study of fifty-seven patients: spectrum of HUV. Arthritis Rheumatol. 67(2):527–534

    CAS  PubMed  Google Scholar 

  28. Bassyouni IH, Gamal S, Talaat RM, Siam I (2014) Autoantibodies against complement C1q in patients with Behcet’s disease: association with vascular involvement. Mod Rheumatol. 24(2):316–320

    CAS  PubMed  Google Scholar 

  29. Lienesch DW, Sherman KE, Metzger A, Shen GQ (2006) Anti-Clq antibodies in patients with chronic hepatitis C infection. Clin Exp Rheumatol. 24(2):183–185

    CAS  PubMed  Google Scholar 

  30. Saadoun D, Sadallah S, Trendelenburg M, Limal N, Sene D, Piette JC et al (2006) Anti-C1q antibodies in hepatitis C virus infection. Clin Exp Immunol. 145(2):308–312

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fadda SH, Bassyouni IH, Hamdy A, Foad NA, Wali IE (2015) Anti-C1q in chronic hepatitis C virus genotype IV infection: association with autoimmune rheumatologic manifestations. Immunol Invest. 44(1):45–55

    CAS  PubMed  Google Scholar 

  32. Prohászka Z, Daha MR, Süsal C, Daniel V, Szlávik J, Bánhegyi D et al (1999) C1q autoantibodies in HIV infection: correlation to elevated levels of autoantibodies against 60-kDa heat-shock proteins. Clin Immunol 90(2):247–255

    PubMed  Google Scholar 

  33. de Boysson H, Martin Silva N, Comoz F, Boutemy J, Bienvenu B (2015) Vasculitis secondary to anti-C1q antibodies induced by Toxocariasis. Infection. 43(6):755–758

    PubMed  Google Scholar 

  34. Gatto M, Iaccarino L, Ghirardello A, Punzi L, Doria A (2016) Clinical and pathologic considerations of the qualitative and quantitative aspects of lupus nephritogenic autoantibodies: a comprehensive review. J Autoimmun. 69:1–11

    CAS  PubMed  Google Scholar 

  35. Eggleton P, Ukoumunne OC, Cottrell I, Khan A, Maqsood S, Thornes J et al (2014) Autoantibodies against C1q as a diagnostic measure of lupus nephritis: systematic review and meta-analysis. J Clin Cell Immunol. 5(2):210

    PubMed  PubMed Central  Google Scholar 

  36. Trendelenburg M, Marfurt J, Gerber I, Tyndall A, Schifferli JA (1999) Lack of occurrence of severe lupus nephritis among anti-C1q autoantibody-negative patients. Arthritis Rheum. 42(1):187–188

    CAS  PubMed  Google Scholar 

  37. Meyer OC, Nicaise-Roland P, Cadoudal N, Grootenboer-Mignot S, Palazzo E, Hayem G et al (2009) Anti-C1q antibodies antedate patent active glomerulonephritis in patients with systemic lupus erythematosus. Arthritis Res Ther. 11(3):R87

    PubMed  PubMed Central  Google Scholar 

  38. Gunnarsson I, Rönnelid J, Lundberg I, Jacobson SH (1997) Occurrence of anti-C1q antibodies in IgA nephropathy. Nephrol Dial Transplant 12(11):2263–2268

    CAS  PubMed  Google Scholar 

  39. Trouw LA, Seelen MA, Visseren R, Duijs JMGJ, Benediktsson H, de Heer E et al (2004) Anti-C1q autoantibodies in murine lupus nephritis. Clin Exp Immunol. 135(1):41–48

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Thanei S, Vanhecke D, Trendelenburg M (2015) Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin Immunol 160(2):180–187

    CAS  PubMed  Google Scholar 

  41. Thanei S, Trendelenburg M (2017) Anti-C1q autoantibodies from patients with systemic lupus erythematosus induce C1q production by macrophages. J Leukoc Biol. 101(2):481–491

    CAS  PubMed  Google Scholar 

  42. Thanei S, Trendelenburg M (2016) Anti-C1q Autoantibodies from Systemic Lupus Erythematosus Patients Induce a Proinflammatory Phenotype in Macrophages. J Immunol 196(5):2063–2074

    CAS  PubMed  Google Scholar 

  43. Pang Y, Yang X-W, Song Y, Yu F, Zhao M-H (2014) Anti-C1q autoantibodies from active lupus nephritis patients could inhibit the clearance of apoptotic cells and complement classical pathway activation mediated by C1q in vitro. Immunobiology. 219(12):980–989

    CAS  PubMed  Google Scholar 

  44. Bigler C, Schaller M, Perahud I, Osthoff M, Trendelenburg M (2009) Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells. J Immunol 183(5):3512–3521

    CAS  PubMed  Google Scholar 

  45. Oku K, Nakamura H, Kono M, Ohmura K, Kato M, Bohgaki T et al (2016) Complement and thrombosis in the antiphospholipid syndrome. Autoimmun Rev. 15(10):1001–1004

    CAS  PubMed  Google Scholar 

  46. Bulva J (2017) Hypocomplementemic urticarial vasculitis (HUV) and hypocomplementemic urticarial vasculitis syndrome (HUVS): background, pathogenesis, diagnosis, laboratory testing, management and treatment. J Autoimmunity Res 1028

  47. Jayakanthan K, Gupta AN, Mathew J, Ravindran R, Mahasampth G, Danda D (2017) Clinical utility of anti-C1q antibody in primary and secondary vasculitic conditions. Int J Health Sci. 11(5):3–6

    Google Scholar 

  48. El-Shamy A, Branch AD, Schiano TD, Gorevic PD (2018) The complement system and C1q in chronic hepatitis C virus infection and mixed cryoglobulinemia. Front Immunol. 9:1001

    PubMed  PubMed Central  Google Scholar 

  49. Koma T, Veljkovic V, Anderson DE, Wang L-F, Rossi SL, Shan C et al (2018) Zika virus infection elicits auto-antibodies to C1q. Sci Rep. 30 8(1):1882

    Google Scholar 

  50. Csorba K, Schirmbeck L, Ribi C, Chizzolini C, Huynh-Do U, Vanhecke D et al (2018) Anti-C1q antibodies as occuring in systemic lupus erytematosus could be induced by an Epstein-Barr virus-derived antigenic site. Mol Immunol 102:222

    Google Scholar 

  51. Uwatoko S, Aotsuka S, Okawa M, Egusa Y, Yokohari R, Aizawa C et al (1987) C1q solid-phase radioimmunoassay: evidence for detection of antibody directed against the collagen-like region of C1q in sera from patients with systemic lupus erythematosus. Clin Exp Immunol. 69(1):98–106

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsacheva I, Radanova M, Todorova N, Argirova T, Kishore U (2007) Detection of autoantibodies against the globular domain of human C1q in the sera of systemic lupus erythematosus patients. Mol Immunol. 44(8):2147–2151

    CAS  PubMed  Google Scholar 

  53. Stoyanova V, Tchorbadjieva M, Deliyska B, Vasilev V, Tsacheva I (2012) Biochemical analysis of the epitope specificities of anti-C1q autoantibodies accompanying human lupus nephritis reveals them as a dynamic population in the course of the disease. Immunol Lett. 148(1):69–76

    CAS  PubMed  Google Scholar 

  54. Tan Y, Zhou W, Yu F, Fang Q, Yang H, Zhao M (2009) Detection of anti-C1q antibodies and anti-C1q globular head domain antibodies in sera from Chinese patients with lupus nephritis. Mol Immunol. 46(11-12):2178–2182

    CAS  PubMed  Google Scholar 

  55. Antes U, Heinz HP, Loos M (1988) Evidence for the presence of autoantibodies to the collagen-like portion of C1q in systemic lupus erythematosus. Arthritis Rheum. 31(4):457–464

    CAS  PubMed  Google Scholar 

  56. Ryan BJ, Nissim A, Winyard PG (2014) Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol. 2:715–724

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schaller M, Bigler C, Danner D, Ditzel HJ, Trendelenburg M (2009) Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven. J Immunol 183(12):8225–8231

    CAS  PubMed  Google Scholar 

  58. Trinder PK, Märker-Hermann E, Loos M, Maeurer MJ (1999) Functional definition of a B cell epitope, KGEQGEPGA, on C1q the Fc-binding subunit of the first component of complement. Scand J Immunol. 50(6):635–641

    CAS  PubMed  Google Scholar 

  59. Pang Y, Tan Y, Li Y, Zhang J, Guo Y, Guo Z et al (2016) Serum A08 C1q antibodies are associated with disease activity and prognosis in Chinese patients with lupus nephritis. Kidney Int. 90(6):1357–1367

    CAS  PubMed  Google Scholar 

  60. Beurskens FJ, van Schaarenburg RA, Trouw LA (2015) C1q, antibodies and anti-C1q autoantibodies. Mol Immunol. 68(1):6–13

    CAS  PubMed  Google Scholar 

  61. Vanhecke D, Roumenina LT, Wan H, Osthoff M, Schaller M, Trendelenburg M (2012) Identification of a major linear C1q epitope allows detection of systemic lupus erythematosus anti-C1q antibodies by a specific peptide-based enzyme-linked immunosorbent assay. Arthritis Rheum. 64(11):3706–3714

    CAS  PubMed  Google Scholar 

  62. Seelen MA, Trouw LA, van der Hoorn JWA (2003) Fallaux-van den Houten FC, Huizinga TWJ, Daha MR, et al. Autoantibodies against mannose-binding lectin in systemic lupus erythematosus. Clin Exp Immunol. 134(2):335–343

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Takahashi R, Tsutsumi A, Ohtani K, Goto D, Matsumoto I, Ito S et al (2004) Anti-mannose binding lectin antibodies in sera of Japanese patients with systemic lupus erythematosus. Clin Exp Immunol. 136(3):585–590

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mok MY, Jack DL, Lau CS, Fong DYT, Turner MW, Isenberg DA et al (2004) Antibodies to mannose binding lectin in patients with systemic lupus erythematosus. Lupus. 13(7):522–528

    CAS  PubMed  Google Scholar 

  65. Pradhan V, Mahant G, Rajadhyaksha A, Surve P, Rajendran V, Patwardhan M et al (2013) A study on anti-mannose binding lectin (anti-MBL) antibodies and serum MBL levels in Indian systemic lupus erythematosus patients. Rheumatol Int. 33(5):1193–1199

    CAS  PubMed  Google Scholar 

  66. Shoenfeld Y, Szyper-Kravitz M, Witte T, Doria A, Tsutsumi A, Tatsuya A et al (2007) Autoantibodies against protective molecules--C1q, C-reactive protein, serum amyloid P, mannose-binding lectin, and apolipoprotein A1: prevalence in systemic lupus erythematosus. Ann N Y Acad Sci. 1108:227–239

    CAS  PubMed  Google Scholar 

  67. Garred P, Voss A, Madsen HO, Junker P (2001) Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun. 2(8):442–450

    CAS  PubMed  Google Scholar 

  68. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1(3):237–243

    CAS  PubMed  Google Scholar 

  69. Gupta B, Raghav SK, Agrawal C, Chaturvedi VP, Das RH, Das HR (2006) Anti-MBL autoantibodies in patients with rheumatoid arthritis: prevalence and clinical significance. J Autoimmun. 27(2):125–133

    CAS  PubMed  Google Scholar 

  70. Fraser DA, Tenner AJ (2008) Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules. Curr Drug Targets. 9(2):113–122

    CAS  PubMed  Google Scholar 

  71. Yoshizawa S, Nagasawa K, Yae Y, Niho Y, Okochi K (1997) A thermolabile beta 2-macroglycoprotein (TMG) and the antibody against TMG in patients with systemic lupus erythematosus. Clin Chim Acta Int J Clin Chem. 264(2):219–225

    CAS  Google Scholar 

  72. Colliard S, Jourde-Chiche N, Clavarino G, Sarrot-Reynauld F, Gout E, Deroux A et al (2018) Autoantibodies targeting Ficolin-2 in systemic lupus erythematosus patients with active nephritis. Arthritis Care Res. 70(8):1263–1268

    CAS  Google Scholar 

  73. Plawecki M, Lheritier E, Clavarino G, Jourde-Chiche N, Ouili S, Paul S et al (2016) Association between the presence of autoantibodies targeting Ficolin-3 and active nephritis in patients with systemic lupus erythematosus. PloS One. 11(9):e0160879

    PubMed  PubMed Central  Google Scholar 

  74. Henriksen ML, Brandt J, Andrieu J-P, Nielsen C, Jensen PH, Holmskov U et al (2013) Heteromeric complexes of native collectin kidney 1 and collectin liver 1 are found in the circulation with MASPs and activate the complement system. J Immunol 191(12):6117–6127

    CAS  PubMed  Google Scholar 

  75. Troldborg A, Thiel S, Jensen L, Hansen S, Laska MJ, Deleuran B et al (2015) Collectin liver 1 and collectin kidney 1 and other complement-associated pattern recognition molecules in systemic lupus erythematosus. Clin Exp Immunol. 182(2):132–138

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhong L (2017) Serum proteomics study reveals candidate biomarkers for systemic lupus erythematosus. Int J Clin Exp Pathol 10:10681–10694

    PubMed  PubMed Central  Google Scholar 

  77. Cai Y, Teo BHD, Yeo JG, Lu J (2015) C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins. J Biol Chem. 290(37):22570–22580

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yeo JG, Leong J, Arkachaisri T, Cai Y, Teo BHD, Tan JHT et al (2016) Proteolytic inactivation of nuclear alarmin high-mobility group box 1 by complement protease C1s during apoptosis. Cell Death Discov. 2:16069

    CAS  PubMed  PubMed Central  Google Scholar 

  79. He S, Lin Y-L (1998) In vitro stimulation of C1s proteolytic activities by C1s-presenting autoantibodies from patients with systemic lupus erythematosus. J Immunol. 160(9):4641–4647

    CAS  PubMed  Google Scholar 

  80. Cicardi M, Zingale L, Zanichelli A, Pappalardo E, Cicardi B (2005) C1 inhibitor: molecular and clinical aspects. Springer Semin Immunopathol. 27(3):286–298

    CAS  PubMed  Google Scholar 

  81. Wagenaar-Bos IGA, Hack CE (2006) Structure and function of C1-inhibitor. Immunol Allergy Clin North Am. 26(4):615–632

    PubMed  Google Scholar 

  82. Zuraw BL (2008) Clinical practice. Hereditary angioedema. N Engl J Med 359(10):1027–1036

    CAS  PubMed  Google Scholar 

  83. Cicardi M, Aberer W, Banerji A, Bas M, Bernstein JA, Bork K et al (2014) Classification, diagnosis, and approach to treatment for angioedema: consensus report from the Hereditary Angioedema International Working Group. Allergy. 69(5):602–616

    CAS  PubMed  Google Scholar 

  84. Jackson J, Sim RB, Whelan A, Feighery C (1986) An IgG autoantibody which inactivates C1-inhibitor. Nature. 323(6090):722–724

    CAS  PubMed  Google Scholar 

  85. Gobert D, Paule R, Ponard D, Levy P, Frémeaux-Bacchi V, Bouillet L et al (2016) A nationwide study of acquired C1-inhibitor deficiency in France: Characteristics and treatment responses in 92 patients. Medicine 95(33):e4363

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zanichelli A, Azin GM, Wu MA, Suffritti C, Maggioni L, Caccia S et al (2017) Diagnosis, course, and management of angioedema in patients with acquired C1-inhibitor deficiency. J Allergy Clin Immunol Pract. 5(5):1307–1313

    PubMed  Google Scholar 

  87. Castelli R, Deliliers DL, Zingale LC, Pogliani EM, Cicardi M (2007) Lymphoproliferative disease and acquired C1 inhibitor deficiency. Haematologica. 92(5):716–718

    PubMed  Google Scholar 

  88. Frémeaux-Bacchi V, Guinnepain M-T, Cacoub P, Dragon-Durey M-A, Mouthon L, Blouin J et al (2002) Prevalence of monoclonal gammopathy in patients presenting with acquired angioedema type 2. Am J Med. 113(3):194–199

    PubMed  Google Scholar 

  89. He S, Tsang S, North J, Chohan N, Sim RB, Whaley K (1996) Epitope mapping of C1 inhibitor autoantibodies from patients with acquired C1 inhibitor deficiency. J Immunol 156(5):2009–2013

    CAS  PubMed  Google Scholar 

  90. Cicardi M, Beretta A, Colombo M, Gioffré D, Cugno M, Agostoni A (1996) Relevance of lymphoproliferative disorders and of anti-C1 inhibitor autoantibodies in acquired angio-oedema. Clin Exp Immunol. 106(3):475–480

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ponce IM, Caballero T, Reche M, Piteiro AB, López-Serrano MC, Fontán G et al (2002) Polyclonal autoantibodies against C1 inhibitor in a case of acquired angioedema. Ann Allergy Asthma Immunol. 88(6):632–637

    PubMed  Google Scholar 

  92. Cicardi M, Zanichelli A (2010) Acquired angioedema. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. 6(1):14

    Google Scholar 

  93. Varga L, Széplaki G, Visy B, Füst G, Harmat G, Miklós K et al (2007) C1-inhibitor (C1-INH) autoantibodies in hereditary angioedema. Strong correlation with the severity of disease in C1-INH concentrate naïve patients. Mol Immunol. 44(6):1454–1460

    CAS  PubMed  Google Scholar 

  94. Varga L, Füst G, Csuka D, Farkas H (2011) Treatment with C1-inhibitor concentrate does not induce IgM type anti-C1 inhibitor antibodies in patients with hereditary angioedema. Mol Immunol. 48(4):572–576

    CAS  PubMed  Google Scholar 

  95. Mészáros T, Füst G, Farkas H, Jakab L, Temesszentandrási G, Nagy G et al (2010) C1-inhibitor autoantibodies in SLE. Lupus. 19(5):634–638

    PubMed  Google Scholar 

  96. Tekin ZE, Yener GO, Yüksel S (2018) Acquired angioedema in juvenile systemic lupus erythematosus: case-based review. Rheumatol Int. 38(8):1577–1584

    PubMed  Google Scholar 

  97. Marbán Bermejo E, Caballero T, López-Trascasa M, Caballero Peregrín P, Gil HJ (2018) Acquired Angioedema With Anti-C1-inhibitor Autoantibodies During Assisted Reproduction Techniques. J Investig Allergol Clin Immunol. 28(1):62–64

    PubMed  Google Scholar 

  98. Széplaki G, Varga L, Osváth L, Karádi I, Füst G, Farkas H (2006) Deep venous thrombosis associated with acquired angioedema type II in a patient heterozygous for the mutation of factor V Leiden: effective treatment and follow-up for four years. Thromb Haemost. 95(5):898–899

    PubMed  Google Scholar 

  99. Széplaki G, Varga L, Szépvölgyi A, Simon K, Blaskó B, Nagy E et al (2008) Acquired angioedema associated with primary antiphospholipid syndrome in a patient with antithrombin III deficiency. Int Arch Allergy Immunol. 146(2):164–168

    PubMed  Google Scholar 

  100. Mandle R, Baron C, Roux E, Sundel R, Gelfand J, Aulak K et al (1994) Acquired C1 inhibitor deficiency as a result of an autoantibody to the reactive center region of C1 inhibitor. J Immunol 152(9):4680–4685

    CAS  PubMed  Google Scholar 

  101. He S, Sim RB, Whaley K (1997) A secondary C1s interaction site on C1-inhibitor is essential for formation of a stable enzyme-inhibitor complex. FEBS Lett. 405(1):42–46

    CAS  PubMed  Google Scholar 

  102. Jackson J, Sim RB, Whaley K, Feighery C (1989) Autoantibody facilitated cleavage of C1-inhibitor in autoimmune angioedema. J Clin Invest. 83(2):698–707

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Alsenz J, Bork K, Loos M (1987) Autoantibody-mediated acquired deficiency of C1 inhibitor. N Engl J Med. 316(22):1360–1366

    CAS  PubMed  Google Scholar 

  104. Zuraw BL, Curd JG (1986) Demonstration of modified inactive first component of complement (C1) inhibitor in the plasmas of C1 inhibitor-deficient patients. J Clin Invest. 78(2):567–575

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jackson J, Feighery C (1988) Autoantibody-mediated acquired deficiency of C1 inhibitor. N Engl J Med. 318(2):122–123

    CAS  PubMed  Google Scholar 

  106. Wu MA, Castelli R (2016) The Janus faces of acquired angioedema: C1-inhibitor deficiency, lymphoproliferation and autoimmunity. Clin Rev Allergy Immunol 51(2):162–169

    CAS  PubMed  Google Scholar 

  107. Sethi S, Fervenza FC (2012) Membranoproliferative glomerulonephritis—a new look at an old entity. N Engl J Med. 366(12):1119–1131

    CAS  PubMed  Google Scholar 

  108. Pickering MC, D’Agati VD, Nester CM, Smith RJ, Haas M, Appel GB et al (2013) C3 glomerulopathy: consensus report. Kidney Int. 84(6):1079–1089

    PubMed  PubMed Central  Google Scholar 

  109. Fakhouri F, Frémeaux-Bacchi V, Noël L-H, Cook HT, Pickering MC (2010) C3 glomerulopathy: a new classification. Nat Rev Nephrol. 6(8):494–499

    CAS  PubMed  Google Scholar 

  110. Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Fremeaux-Bacchi V, Goodship THJ et al (2015) Atypical aHUS: State of the art. Mol Immunol. 67(1):31–42

    CAS  PubMed  Google Scholar 

  111. Spitzer RE, Vallota EH, Forristal J, Sudora E, Stitzel A, Davis NC et al (1969) Serum C’3 lytic system in patients with glomerulonephritis. Science. 164(3878):436–437

    CAS  PubMed  Google Scholar 

  112. Paixão-Cavalcante D, López-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Córdoba SR et al (2012) Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 82(10):1084–1092

    PubMed  PubMed Central  Google Scholar 

  113. Nozal P, López-Trascasa M (2016) Autoantibodies against alternative complement pathway proteins in renal pathologies. Nefrol. 36(5):489–495

    Google Scholar 

  114. Daha MR, Fearon DT, Austen KF (1976) C3 nephritic factor (C3NeF): stabilization of fluid phase and cell-bound alternative pathway convertase. J Immunol 116(1):1–7

    CAS  PubMed  Google Scholar 

  115. Ohi H, Watanabe S, Fujita T, Yasugi T (1992) Significance of C3 nephritic factor (C3NeF) in non-hypocomplementaemic serum with membranoproliferative glomerulonephritis (MPGN). Clin Exp Immunol. 89(3):479–484

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Daha MR, Van Es LA (1981) Stabilization of homologous and heterologous cell-bound amplification convertases, C3bBb, by C3 nephritic factor. Immunology. 43(1):33–38

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tanuma Y, Ohi H, Hatano M (1990) Two types of C3 nephritic factor: properdin-dependent C3NeF and properdin-independent C3NeF. Clin Immunol Immunopathol. 56(2):226–238

    CAS  PubMed  Google Scholar 

  118. Levy Erez D, Meyers KE, Sullivan KE (2017) C3 nephritic factors: a changing landscape. J Allergy Clin Immunol. 140(1):57–59

    PubMed  Google Scholar 

  119. Thompson RA, Yap PL, Brettle RB, Dunmow RE, Chapel H (1983) Meningococcal meningitis associated with persistent hypocomplementaemia due to circulating C3 nephritic factor. Clin Exp Immunol. 52(1):153–156

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Frémeaux-Bacchi V, Weiss L, Demouchy C, May A, Palomera S, Kazatchkine MD (1994) Hypocomplementaemia of poststreptococcal acute glomerulonephritis is associated with C3 nephritic factor (C3NeF) IgG autoantibody activity. Nephrol Dial Transplant. 9(12):1747–1750

    PubMed  Google Scholar 

  121. Misra A, Peethambaram A, Garg A (2004) Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine 83(1):18–34

    CAS  PubMed  Google Scholar 

  122. Savage DB, Semple RK, Clatworthy MR, Lyons PA, Morgan BP, Cochran EK et al (2009) Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 94(1):10–16

    CAS  PubMed  Google Scholar 

  123. Schwertz R, Rother U, Anders D, Gretz N, Schärer K, Kirschfink M (2001) Complement analysis in children with idiopathic membranoproliferative glomerulonephritis: a long-term follow-up. Pediatr Allergy. Immunol 12(3):166–172

    CAS  PubMed  Google Scholar 

  124. Sethi S, Fervenza FC, Zhang Y, Zand L, Vrana JA, Nasr SH et al (2012) C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int. 82(4):465–473

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Servais A, Noël L-H, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey M-A et al (2012) Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 82(4):454–464

    CAS  PubMed  Google Scholar 

  126. Zhang Y, Meyer NC, Wang K, Nishimura C, Frees K, Jones M et al (2012) Causes of alternative pathway dysregulation in dense deposit disease. Clin J Am Soc Nephrol CJASN. 7(2):265–274

    CAS  PubMed  Google Scholar 

  127. Niel O, Dallocchio A, Thouret M-C, Guigonis V, Cassuto É, Frémeaux-Bacchi V et al (2015) C3 nephritic factor can be associated with membranous glomerulonephritis. Pediatr Nephrol. 30(2):353–355

    PubMed  Google Scholar 

  128. Nicolas C, Vuiblet V, Baudouin V, Macher M-A, Vrillon I, Biebuyck-Gouge N et al (2014) C3 nephritic factor associated with C3 glomerulopathy in children. Pediatr Nephrol. 29(1):85–94

    PubMed  Google Scholar 

  129. Marinozzi M-C, Chauvet S, Le Quintrec M, Mignotet M, Petitprez F, Legendre C et al (2017) C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney Int. 92(5):1232–1241

    CAS  PubMed  Google Scholar 

  130. Daha MR, Hazevoet HM, Vanes LA, Cats A (1980) Stabilization of the classical pathway C3 convertase C42, by a factor F-42, isolated from serum of patients with systemic lupus erythematosus. Immunology. 40(3):417–424

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Halbwachs L, Leveillé M, Lesavre P, Wattel S, Leibowitch J Nephritic factor of the classical pathway of complement: immunoglobulin G autoantibody directed against the classical pathway C3 convetase enzyme. J Clin Invest. 980 65(6):1249–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tanuma Y, Ohi H, Watanabe S, Seki M, Hatano M (1989) C3 nephritic factor and C4 nephritic factor in the serum of two patients with hypocomplementaemic membranoproliferative glomerulonephritis. Clin Exp Immunol. 76(1):82–85

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ohi H, Yasugi T (1994) Occurrence of C3 nephritic factor and C4 nephritic factor in membranoproliferative glomerulonephritis (MPGN). Clin Exp Immunol. 95(2):316–321

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Miller EC, Chase NM, Densen P, Hintermeyer MK, Casper JT, Atkinson JP (2012) Autoantibody stabilization of the classical pathway C3 convertase leading to C3 deficiency and Neisserial sepsis: C4 nephritic factor revisited. Clin Immunol 145(3):241–250

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Blom AM, Corvillo F, Magda M, Stasiłojć G, Nozal P, Pérez-Valdivia MÁ et al (2016) Testing the activity of complement convertases in serum/plasma for diagnosis of C4NeF-mediated C3 glomerulonephritis. J Clin Immunol. 36(5):517–527

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Meyer NC, Fervenza FC, Lau W, Keenan A, Cara-Fuentes G et al (2017) C4 nephritic factors in C3 glomerulopathy: a case series. Am J Kidney Dis Off J Natl Kidney Found. déc 70(6):834–843

    CAS  Google Scholar 

  137. Zipfel PF, Skerka C, Chen Q, Wiech T, Goodship T, Johnson S et al (2015) The role of complement in C3 glomerulopathy. Mol Immunol. 67(1):21–30

    CAS  PubMed  Google Scholar 

  138. Appel GB, Cook HT, Hageman G, Jennette JC, Kashgarian M, Kirschfink M et al (2005) Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol JASN. 16(5):1392–1403

    PubMed  Google Scholar 

  139. Walport MJ, Davies KA, Botto M, Naughton MA, Isenberg DA, Biasi D et al (1994) C3 nephritic factor and SLE: report of four cases and review of the literature. QJM Mon J Assoc Physicians. 87(10):609–615

    CAS  Google Scholar 

  140. Gewurz AT, Imherr SM, Strauss S, Gewurz H, Mold C (1983) C3 nephritic factor and hypocomplementaemia in a clinically healthy individual. Clin Exp Immunol. 54(1):253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Egan M, Sullivan K, Frazer-Abel A, Cunningham-Rundles C (2016) A healthy female with C3 hypocomplementemia and C3 Nephritic Factor. Clin Immunol. 169:14–15

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Tedesco F, Tovo PA, Tamaro G, Basaglia M, Perticarari S, Villa MA (1985) Selective C3 deficiency due to C3 nephritic factor in an apparently healthy girl. Ric Clin Lab. 15(4):323–329

    CAS  PubMed  Google Scholar 

  143. Spitzer RE, Stitzel AE, Tsokos GC (1990) Evidence that production of autoantibody to the alternative pathway C3 convertase is a normal physiologic event. J Pediatr. 116(5):S103–S108

    CAS  PubMed  Google Scholar 

  144. Noris M, Donadelli R, Remuzzi G (2019) Autoimmune abnormalities of the alternative complement pathway in membranoproliferative glomerulonephritis and C3 glomerulopathy. Pediatr Nephrol. 34(8):1311–1323

    PubMed  Google Scholar 

  145. Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M (2016) Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology. 221(11):1247–1258

    PubMed  Google Scholar 

  146. Michels MAHM, van de Kar NCAJ, Okrój M, Blom AM, van Kraaij SAW, Volokhina EB et al (2018) Overactivity of alternative pathway convertases in patients with complement-mediated renal diseases. Front Immunol. 9:612

    PubMed  PubMed Central  Google Scholar 

  147. Gigli I, Sorvillo J, Mecarelli-Halbwachs L, Leibowitch J (1981) Mechanism of action of the C4 nephritic factor. Deregulation of the classical pathway of C3 convertase. J Exp Med. 154(1):1–12

    CAS  PubMed  Google Scholar 

  148. Zhang Y, Nester CM, Martin B, Skjoedt M-O, Meyer NC, Shao D et al (2014) Defining the complement biomarker profile of C3 glomerulopathy. Clin J Am Soc Nephrol CJASN. 9(11):1876–1882

    CAS  PubMed  Google Scholar 

  149. Strobel S, Zimmering M, Papp K, Prechl J, Józsi M (2010) Anti-factor B autoantibody in dense deposit disease. Mol Immunol. 47(7-8):1476–1483

    CAS  PubMed  Google Scholar 

  150. Chen Q, Müller D, Rudolph B, Hartmann A, Kuwertz-Bröking E, Wu K et al (2011) Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med. 365(24):2340–2342

    CAS  PubMed  Google Scholar 

  151. Marinozzi MC, Roumenina LT, Chauvet S, Hertig A, Bertrand D, Olagne J et al (2017) Anti-Factor B and Anti-C3b autoantibodies in C3 glomerulopathy and Ig-associated membranoproliferative GN. J Am Soc Nephrol JASN. 28(5):1603–1613

    CAS  PubMed  Google Scholar 

  152. Józsi M, Reuter S, Nozal P, López-Trascasa M, Sánchez-Corral P, Prohászka Z et al (2014) Autoantibodies to complement components in C3 glomerulopathy and atypical hemolytic uremic syndrome. Immunol Lett. 160(2):163–171

    PubMed  Google Scholar 

  153. Nozal P, Garrido S, Martínez-Ara J, Picazo ML, Yébenes L, Álvarez-Doforno R et al (2015) Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol. 16:40

    PubMed  PubMed Central  Google Scholar 

  154. Ripoche J, Fontaine M, Godin M, Hauptmann G, Goetz J (1983) Partial deficiency of the fourth component of human complement (C4) and autoantibody directed against C4 in a patient with SLE. Ann Immunol. 134D(2):233–245

    CAS  Google Scholar 

  155. Lambin P, Le Pennec PY, Hauptmann G, Desaint O, Habibi B, Salmon C (1984) Adverse transfusion reactions associated with a precipitating anti-C4 antibody of anti-Rodgers specificity. Vox Sang. 47(3):242–249

    CAS  PubMed  Google Scholar 

  156. Morohoshi K, Kuo, Chuan-Hui, Ohbayashi, Masaharu, Patel, Nishal, Chong, Victor N, Bird, Alan C et al (2015) Autoantibody signature for age-related macular degeneration. Med Res Arch:1–16

  157. Rodríguez de Córdoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sánchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol. 41(4):355–367

    PubMed  Google Scholar 

  158. Dragon-Durey M-A, Loirat C, Cloarec S, Macher M-A, Blouin J, Nivet H et al (2005) Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol JASN. 16(2):555–563

    CAS  PubMed  Google Scholar 

  159. Józsi M, Strobel S, Dahse H-M, Liu W, Hoyer PF, Oppermann M et al (2007) Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood. 110(5):1516–1518

    PubMed  Google Scholar 

  160. Józsi M, Licht C, Strobel S, Zipfel SLH, Richter H, Heinen S et al (2008) Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 111(3):1512–1514

    PubMed  Google Scholar 

  161. Dragon-Durey M-A, Sethi SK, Bagga A, Blanc C, Blouin J, Ranchin B et al (2010) Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol JASN. 21(12):2180–2187

    PubMed  Google Scholar 

  162. Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN, Herbert AP et al (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 115(2):379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Strobel S, Hoyer PF, Mache CJ, Sulyok E, Liu W-S, Richter H et al (2010) Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol Dial Transplant. 25(1):136–144

    CAS  PubMed  Google Scholar 

  164. Blanc C, Roumenina LT, Ashraf Y, Hyvärinen S, Sethi SK, Ranchin B et al (2012) Overall neutralization of complement factor H by autoantibodies in the acute phase of the autoimmune form of atypical hemolytic uremic syndrome. J Immunol. 189(7):3528–3537

    CAS  PubMed  Google Scholar 

  165. Hofer J, Janecke AR, Zimmerhackl LB, Riedl M, Rosales A, Giner T et al (2013) Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol CJASN. 8(3):407–415

    CAS  PubMed  Google Scholar 

  166. Sinha A, Gulati A, Saini S, Blanc C, Gupta A, Gurjar BS et al (2014) Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int. 85(5):1151–1160

    CAS  PubMed  Google Scholar 

  167. Lee JM, Park YS, Lee JH, Park SJ, Shin JI, Park Y-H et al (2015) Atypical hemolytic uremic syndrome: Korean pediatric series. Pediatr Int. 57(3):431–438

    PubMed  Google Scholar 

  168. Nozal P, Bernabéu-Herrero ME, Uzonyi B, Szilágyi Á, Hyvärinen S, Prohászka Z et al (2016) Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H autoantibodies in atypical hemolytic uremic syndrome. Mol Immunol. 70:47–55

    CAS  PubMed  Google Scholar 

  169. Brocklebank V, Johnson S, Sheerin TP, Marks SD, Gilbert RD, Tyerman K et al (2017) Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland. Kidney Int. 92(5):1261–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Strobel S, Abarrategui-Garrido C, Fariza-Requejo E, Seeberger H, Sánchez-Corral P, Józsi M (2011) Factor H-related protein 1 neutralizes anti-factor H autoantibodies in autoimmune hemolytic uremic syndrome. Kidney Int. 80(4):397–404

    CAS  PubMed  Google Scholar 

  171. Rigothier C, Delmas Y, Roumenina LT, Contin-Bordes C, Lepreux S, Bridoux F et al (2015) Distal angiopathy and atypical hemolytic uremic syndrome: clinical and functional properties of an anti-Factor H IgAλ antibody. Am J Kidney Dis. 66(2):331–336

    CAS  PubMed  Google Scholar 

  172. Blanc C, Togarsimalemath SK, Chauvet S, Le Quintrec M, Moulin B, Buchler M et al (2015) Anti-factor H autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic syndrome: one target, two diseases. J Immunol. 194(11):5129–5138

    CAS  PubMed  Google Scholar 

  173. Goodship THJ, Pappworth IY, Toth T, Denton M, Houlberg K, McCormick F et al (2012) Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol. 52(3-4):200–206

    CAS  PubMed  Google Scholar 

  174. Bridoux F, Desport E, Frémeaux-Bacchi V, Chong CF, Gombert J-M, Lacombe C et al (2011) Glomerulonephritis with isolated C3 deposits and monoclonal gammopathy: a fortuitous association? Clin J Am Soc Nephrol CJASN. 6(9):2165–2174

    CAS  PubMed  Google Scholar 

  175. Foltyn Zadura A, Zipfel PF, Bokarewa MI, Sturfelt G, Jönsen A, Nilsson SC et al (2012) Factor H autoantibodies and deletion of Complement Factor H-Related protein-1 in rheumatic diseases in comparison to atypical hemolytic uremic syndrome. Arthritis Res Ther. 14(4):R185

    PubMed  PubMed Central  Google Scholar 

  176. Meri S, Koistinen V, Miettinen A, Törnroth T, Seppälä IJ (1992) Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J Exp Med. 175(4):939–950

    CAS  PubMed  Google Scholar 

  177. Jokiranta TS, Solomon A, Pangburn MK, Zipfel PF, Meri S (1999) Nephritogenic lambda light chain dimer: a unique human miniautoantibody against complement factor H. J Immunol 163(8):4590–4596

    CAS  PubMed  Google Scholar 

  178. Durey M-AD, Sinha A, Togarsimalemath SK, Bagga A (2016) Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol. 12(9):563–578

    CAS  PubMed  Google Scholar 

  179. Dragon-Durey M-A, Blanc C, Garnier A, Hofer J, Sethi SK, Zimmerhackl L-B (2010) Anti-factor H autoantibody-associated hemolytic uremic syndrome: review of literature of the autoimmune form of HUS. Semin Thromb Hemost. 36(6):633–640

    CAS  PubMed  Google Scholar 

  180. Loirat C, Frémeaux-Bacchi V (2011) Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 6:60

    PubMed  PubMed Central  Google Scholar 

  181. Diamante Chiodini B, Davin J-C, Corazza F, Khaldi K, Dahan K, Ismaili K et al (2014) Eculizumab in anti-factor h antibodies associated with atypical hemolytic uremic syndrome. Pediatrics. 133(6):e1764–e1768

    PubMed  Google Scholar 

  182. Noone D, Waters A, Pluthero FG, Geary DF, Kirschfink M, Zipfel PF et al (2014) Successful treatment of DEAP-HUS with eculizumab. Pediatr Nephrol. 29(5):841–851

    PubMed  Google Scholar 

  183. Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med. 361(17):1676–1687

    CAS  PubMed  Google Scholar 

  184. Dragon-Durey M-A, Frémeaux-Bacchi V, Loirat C, Blouin J, Niaudet P, Deschenes G et al (2004) Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol JASN. 15(3):787–795

    CAS  PubMed  Google Scholar 

  185. Servais A, Noël L-H, Dragon-Durey M-A, Gübler M-C, Rémy P, Buob D et al (2011) Heterogeneous pattern of renal disease associated with homozygous factor H deficiency. Hum Pathol. 42(9):1305–1311

    CAS  PubMed  Google Scholar 

  186. Matsukuma E, Gotoh Y, Kuroyanagi Y, Yamada T, Iwasa M, Yamakawa S et al (2011) A case of atypical hemolytic uremic syndrome due to anti-factor H antibody in a patient presenting with a factor XII deficiency identified two novel mutations. Clin Exp Nephrol. 15(2):269–274

    PubMed  Google Scholar 

  187. Patschan D, Korsten P, Behlau A, Vasko R, Heeg M, Sweiss N et al (2011) Idiopathic combined, autoantibody-mediated ADAMTS-13/factor H deficiency in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome in a 17-year-old woman: a case report. J Med Case Reports. 5:598

    PubMed Central  Google Scholar 

  188. Goodship THJ, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D et al (2017) Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a « Kidney Disease: Improving Global Outcomes » (KDIGO) Controversies Conference. Kidney Int. 91(3):539–551

    CAS  PubMed  Google Scholar 

  189. Watson R, Lindner S, Bordereau P, Hunze E-M, Tak F, Ngo S et al (2014) Standardisation of the factor H autoantibody assay. Immunobiology. 219(1):9–16

    CAS  PubMed  Google Scholar 

  190. Kavanagh D, Pappworth IY, Anderson H, Hayes CM, Moore I, Hunze E-M et al (2012) Factor I autoantibodies in patients with atypical hemolytic uremic syndrome: disease-associated or an epiphenomenon? Clin J Am Soc Nephrol CJASN. 7(3):417–426

    CAS  PubMed  Google Scholar 

  191. Chen JY, Cortes C, Ferreira VP (2018) Properdin: a multifaceted molecule involved in inflammation and diseases. Mol Immunol. 102:58–72

    CAS  PubMed  Google Scholar 

  192. Wilson JG, Jack RM, Wong WW, Schur PH, Fearon DT (1985) Autoantibody to the C3b/C4b receptor and absence of this receptor from erythrocytes of a patient with systemic lupus erythematosus. J Clin Invest. 76(1):182–190

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Cook JM, Kazatchkine MD, Bourgeois P, Mignon F, Mery JP, Kahn MF (1986) Anti-C3b-receptor (CR1) antibodies in patients with systemic lupus erythematosus. Clin Immunol Immunopathol. 38(1):135–138

    CAS  PubMed  Google Scholar 

  194. Mir A, Balsalobre B (1994) Inhibition of complement-dependent phagocytosis by autoantibodies against C3b-receptor (CR1) in a case of systemic lupus erythematosus. J Intern Med. 235(3):284–285

    CAS  PubMed  Google Scholar 

  195. Watson R, Wearmouth E, McLoughlin A-C, Jackson A, Ward S, Bertram P et al (2015) Autoantibodies to CD59, CD55, CD46 or CD35 are not associated with atypical haemolytic uraemic syndrome (aHUS). Mol Immunol. 63(2):287–296

    CAS  PubMed  Google Scholar 

  196. Kuwabara Y, Katayama A, Kurihara S, Orimo H, Takeshita T (2018) Immunoproteomic identification of anti-C9 autoimmune antibody in patients with seronegative obstetric antiphospholipid syndrome. PloS One. 13(6):e0198472

    PubMed  PubMed Central  Google Scholar 

  197. Kaplon H, Reichert JM (2018) Antibodies to watch in 2018. mAbs 10(2):183–203

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Defendi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval and Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defendi, F., Thielens, N.M., Clavarino, G. et al. The Immunopathology of Complement Proteins and Innate Immunity in Autoimmune Disease. Clinic Rev Allerg Immunol 58, 229–251 (2020). https://doi.org/10.1007/s12016-019-08774-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-019-08774-5

Keywords

Navigation