Skip to main content
Log in

Technologies for the synthesis of ethylene and propylene from natural gas

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

Different technologies for the synthesis of ethylene and propylene from natural gas are considered. The simplest ethylene synthesis method is the oxidative condensation (or dimerization) of methane (OCM process), but the implementation of this method is discouraged by a low ethylene yield. Among the relatively simple methods for the synthesis of ethylene (together with acetylene) immediately from methane are thermooxidative pyrolysis (TOP process) and pyrolysis in the presence of chlorine (Benson process), whose disadvantages are a high temperature and a great number of by-products. A wide range of processes for the synthesis of ethylene and propylene with a small amount of butylenes are based on the intermediate synthesis of syngas from methane and its further use for the direct synthesis of lower olefins or products for subsequent catalytic pyrolysis to lower olefins, such as methanol (methanol-to-olefins (MTO) and methanol-to-propylene (MTP) processes), dimethyl ether, and liquid fuel (Fischer–Tropsch method). The methyl chloride-to-olefins (MCTO) process consisting of the synthesis of methyl chloride via the oxidative chlorination of methane and the catalytic pyrolysis of methyl chloride differ from these three-stage processes in the absence of the syngas production stage. The direct oxidation of methane to methanol and the homologyzation of methanol to ethanol with further dehydration of ethanol to ethylene are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braginskii, O.B., Mirovoi neftegazovyi kompleks (World Oil and Gas Complex), Moscow: Nauka, 2004.

    Google Scholar 

  2. Ethylene. https://en.wikipedia.org/wiki/Ethylene

  3. Braginskii, O.B., Nefte Gazo Khimiya, 2015, no. 2, p. 11.

    Google Scholar 

  4. Rynok etilena v Rossii (Market of Ethylene in Russia), market research report of the Academy of Conjuncture of Industrial Markets, Moscow: Nauka, 2006.

  5. Propylene. https://en.wikipedia.org/wiki/Propene

  6. Ochistka tekhnologicheskikh gazov (Purification of Process Gases), Semenova, T.A. and Leites, I.L., Eds., Moscow: Khimiya, 1977.

  7. Spravochnik azotchika (Reference Book for Works with Nitrogen), Moscow: Khimiya, 1987.

  8. Karavaev, M.M., Leonov, V.E., Popov, I.G., and Shepelev, E.G., Tekhnologiya sinteticheskogo metanola (Technology of Synthetic Methanol), Moscow: Khimiya, 1984.

    Google Scholar 

  9. Vinogradov A.S., Vorob’ev V.S., Daut V.A., Laurinaitis A., Sister V.G., Tauk, M.V., Chernyshev, A.K., and Bitkov, G.M., Sovremennoe sostoyanie proizvodstva metanola (State-of-Art of the Methanol Production), Moscow: Zh. Khimiya i Biznes, 2001.

    Google Scholar 

  10. Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov (Fundamentals of Chemistry and Technology of Monomers), Moscow: Nauka, 2002.

    Google Scholar 

  11. Mukhina, T.L., Barabanov, N.A., Babash, S.E., Men’shikov, V.A., and Avrekh, G.A., Piroliz uglevodorodnogo syr’ya (Pyrolysis of Hydrocarbons), Moscow: Khimiya, 1987.

    Google Scholar 

  12. Matar, S. and Hatch, L., Chemistry of Petrochemical Process, Boston: Gulf Professional, 2001.

    Google Scholar 

  13. Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Conversion of Methane), Moscow: Nauka, 1998.

    Google Scholar 

  14. Dedov, A.G., Loktev, A.S., Parkhomenko, K.V., Moiseev, I.I., Men’shikov, V.A., and Filimonov, I.N., Khim. Prom-st. Segodnya, 2003, no. 3, p. 12.

    Google Scholar 

  15. Makhlin, V.A., Podlesnaya, M.V., Dedov, A.G., Loktev, A.S., Tel’pukhovskaya, N.O., and Moiseev, I.I., Ross. Khim. Zh., 2008, vol. 52, no. 5, p. 73.

    CAS  Google Scholar 

  16. Men’shikov, V.A., Lyakishev, G.G., Apel’baum, A.L., and Gol’dshtein, L.Kh., in Trudy Moskovskogo seminara po gazokhimii 2000–2002 (Proc. Moscow Symp. on Gas Chemistry 2000—2002), Vladimirov, A.I. and Lapidus, A.L., Eds., Moscow: Mosk. Inst. Neftekhim. Gazov. Prom-sti., 2003, p. 68.

  17. Men’shikov, V.A. and Shamrai, O.B., Khim. Prom-st., 1998, no. 4, p. 6.

    Google Scholar 

  18. Ismailov, R.G., Promyshlennaya pererabotka nefti i razvitie neftekhimii (Industrial Processing of Oil and Development of Petrochemical Industry), Baku: Azerb. gos. izd., 1964.

    Google Scholar 

  19. Benson, S.W., US Patent 4199533, Chem. Abstr., 1980, vol. 93, 70984.

    Google Scholar 

  20. Treger, Yu.A. and Rozanov, V.N., Usp. khim., 1989, vol. 58, no. 1, p. 138.

    Article  CAS  Google Scholar 

  21. Report of the Departement de Chimie Physique des Reactions, 7th Natural Gas Conversion Symposium, Dalian, China, 2004, abstr. no. 7-06-125.

  22. Chambon, M., Marquaire, P.-M., and Côme, G.-M., C1 Mol. Chem., 1987, vol. 2, no. 1, p. 47.

    CAS  Google Scholar 

  23. Arutyunov, V.S., Katal. Prom-sti, 2003, no. 3, p. 3.

    Google Scholar 

  24. Arutyunov, V.S., Basevich, V.Ya., and Vedeneev, I.V., Usp. Khim., 1996, vol. 65, no. 3, p. 211.

    Article  CAS  Google Scholar 

  25. Moiseev, I.I., Kinet. Catal., 2001, vol. 42, no. 1, p. 1.

    Article  CAS  Google Scholar 

  26. Ullman’s Encyclopedia of Industrial Chemistry, Weinheim: VCH, 1986.

  27. Rozovskii, A.Ya., Ross. Khim. Zh., 2003, vol. 47, no. 6, p. 53.

    CAS  Google Scholar 

  28. Report of Haldor Topsoe A/S, 7th Natural Gas Conversion Symposium, Dalian, China, 2004, abstr. no. 1-02-22.

  29. Methanol, Topsoe Topics, November 1995.

  30. Sosna, M.Kh., Doctoral (Tech.) Dissertation, Moscow, 1989.

    Google Scholar 

  31. Oil Gas J., 2002, vol. 100, no. 16, p. 64.

  32. Sheldon, R.A., Chemicals from Synthesis Gas: Catalytic Reactions of CO and H2, Dordrecht: D. Reidel, 1983.

    Book  Google Scholar 

  33. Kuznetsova, L.I., Nguen Kuang Guin’, Suzdorf, A.R., Beilin, L.A., Shpiro, E.S., and Minachev, Kh.M., Kinet. Katal., 1989, vol. 30, p. 944.

    CAS  Google Scholar 

  34. Xu, L., Wang, Q., Liang, D., Wang, X., Lin, L., Cui, W., and Yide, XuY., Appl. Catal., A, 1998, vol. 173, p. 19.

    Article  CAS  Google Scholar 

  35. Modern trends in industrial catalysis (based on The European Congress on Catalysis), Katal. prom-sti, 2002, no. 1, p. 41; no. 3, p. 57.

  36. Methanol (ICI low-pressure process), Hydrocarbon Process. (1966-2001), 1981, p. 183.

  37. Neftegaz. Tekhnol., 2003, no. 5, p. 93.

  38. Methanol—Haldor Topsoe A/S, Hydrocarbon Process. (1966-2001), 1981, p. 182.

  39. Methanol: Lurgi low-pressure process), Hydrocarbon Process. (1966-2001), 1981, p. 184.

  40. Streb, S., in Proc. World Congr. on Methanol, Copenhagen, 2000, p. 8.

    Google Scholar 

  41. Chen, J.Q., Vora, B.V., Fuglerud, T., and Kvisle, S., in Proc. 7th Natural Gas Conversion Symposium, Dalian, China, 2004, p. 6.

    Google Scholar 

  42. Chen, J.Q., Bozzano, A., Glover, B., Fuglerud, T., and Kvisle, S., Catal. Today, 2005, vol. 106, p. 103.

    Article  CAS  Google Scholar 

  43. Marker, T.L., Vora, B.V., and Nil’sen, Kh.R., RF Patent 2165955, 2001.

    Google Scholar 

  44. Zhongmin, L., Coal-to-Olefin Technology in China, Dalian: Dalian Inst. Chem. Phys. Chin. Acad. Sci., 2009. zmldicp.ac.cn

    Google Scholar 

  45. Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N,. Pet. Chem., 2008, vol. 48, no. 5, p. 325.

    Article  Google Scholar 

  46. Foley, T., Methanol to Olefins, Paper presented orally, September 23, 2007.

    Google Scholar 

  47. Methanol to Olefins, IOCL Conclave, February 7, 2014.

  48. Koempel, H. and Liebner, W., in Natural Gas Conversion VIII: Proc. 8th Natural Gas Conversion Symp., Natal, Brazil, 2007.

    Google Scholar 

  49. Treger, Yu.A., Chagir, K.A., Savchenkov, S.V., and Repin, D.G., Gazov. Prom-st., 2015, no. 2, p. 17.

    Google Scholar 

  50. Coal and Natural Gas Chemical, Tecnon OrbiChem Marketing Seminar at APIC 2014, Pattaya, 2014.

  51. Liu, Z., Sun, C., Wang, G., Wang, Q., and Cai, G., Fuel Process. Technol., 2000, vol. 62, p. 161.

    Article  CAS  Google Scholar 

  52. Fujimoto, K., Shikada, T., Yamaoka, Y., and Sumigama, T., US Patent 5466720, 1995.

    Google Scholar 

  53. Rozovskii, A.Ya., Khim. Zhizn, 2002, no. 5, p. 8.

    Google Scholar 

  54. Kaiser, S.W., US Patent 4499327, 1985.

    Google Scholar 

  55. Shikada, T., Okhno, F., Ogava, E., Ono, M., Mizuguchi, M., Tomura, K., and Fudzhimoto, K., Kinet. Katal., 1990, vol. 40, no. 3, p. 440.

    Google Scholar 

  56. Rozanov, V.N., Treger, Yu.A., Murashova, O.P., Silina, I.S., and Averina, E.A., NefteGazoKhimiya, 2015, no. 2, p. 29.

    Google Scholar 

  57. Treger, Yu.A., Rozanov, V.N., Sokolova, S.V., and Murashova, O.P., Katal. Prom-sti., 2012, no. 3, p. 15.

    Google Scholar 

  58. Rozanov, V.N., Khim. Prom-st., 1996, no. 6, p. 21.

    Google Scholar 

  59. Treger, Yu.A., Rozanov, V.N., Trusov, L.I., Murashova, O.P., Yas’kova, V.Ya., and Silina, I.S., RF Patent 2522575, Byull. Izobret., 2014, no. 20.

    Google Scholar 

  60. Treger, Yu.A., Rozanov, V.N., and Flid, M.R., RF Patent 2394805, Byull. Izobret., 2010, no. 20.

    Google Scholar 

  61. Rozanov, V.N. and Treger, Yu.A., Katal. Prom-sti., 2015, vol. 15, no. 3, p. 49.

    CAS  Google Scholar 

  62. Kartashov, L.M., Rozanov, V.N., Treger, Yu.A., Flid, M.R., Kalyuzhnaya, T.L., and Tkach, D.V., Katal. Promsti., 2010, no. 3, p. 35.

    Google Scholar 

  63. Treger, Yu.A., Rozanov, V.N., Kartashov, L.M., Flid, M.R., Murashova, O.P., Averina, E.A., and Epikhina, S.V., RF Patent 2451005, 2012.

    Google Scholar 

  64. Treger, Yu.A., Rozanov, V.N., Lun’kov, S.A., Murashova, O.P., and Dasaeva, G.A., Katal. Prom-sti., 2009, no. 2, p. 14.

    Google Scholar 

  65. Treger, Yu.A., Rozanov, V.N., Dasaeva, G.S., Sokolova, S.V., Yas’kova, V., Trusov, L.I., Khadzhiev, S.N., Ivanova, I.I., and Knyazeva, E.E., RF Patent 2522576, Byull. Izobret., 2014, no. 20.

    Google Scholar 

  66. Olsbye, U., Saure, O.V., Muddada, N., Bordiga, S., Lamberti, C., Nilsen, M.N., Lillerud, K.P., and Svelle, S., Catal. Today, 2011, vol. 171, p. 211.

    Article  CAS  Google Scholar 

  67. Sveiti, T.E., Neftegaz. Tekhnol., 2006, no. 1, p. 59.

    Google Scholar 

  68. Dry, M.E., Appl. Catal., A, 1996, vol. 138, p. 319.

    Article  CAS  Google Scholar 

  69. Chemierohstoffe aus Kohle (Chemical Raw Materials from Coal), Falbe, J., Ed., Stuttgart: Georg Thieme, 1977.

  70. Hammer, M., Joisten, S., Luengen, D., and Winkler, Int. J. Energy Res., 1994, vol. 18, p. 223.

    Article  CAS  Google Scholar 

  71. Dry, M.E., Catal. Today, 1990, vol. 6, no. 3, p. 183.

    Article  CAS  Google Scholar 

  72. Hydrocarbon Process. (1966-2001), 1981, p. 156.

  73. Intille, G.M., in Proc. Chemrawn XVI Conference. SRI Consulting, 2003, p. 36.

    Google Scholar 

  74. Fox, J.M., Chen, T.P., Deden, B.D., Chem. End. Prog., 1990, vol. 86, p. 42.

    CAS  Google Scholar 

  75. Rozanov, V.N., Treger Yu.A., Razrabotka protsessov polucheniya khlormetana (Development of the processes of obtaining chlormethane), in Research works of Scientific institute “Synthesis”, Moscow, 1996.

    Google Scholar 

  76. Dong Xiang, Yu Qiau, Yi Mau, and Siyu Yang, Appl. Energy, 2014, vol. 113, p. 639.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Treger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treger, Y.A., Rozanov, V.N. Technologies for the synthesis of ethylene and propylene from natural gas. Ref. J. Chem. 6, 83–123 (2016). https://doi.org/10.1134/S2079978016010039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978016010039

Keywords

Navigation