Skip to main content
Log in

Downlink Throughput Maximization in Multi-UAVs Networks Using Discrete Optimization

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Unmanned Aerial Vehicles (UAVs) require frequent transmissions to a ground station. In this paper, we consider Time Division Multiple Access (TDMA) and equip the ground station with a Successive Interference Cancellation (SIC) radio, and thereby, allowing it to receive multiple transmissions simultaneously. A key problem is to identify a suitable TDMA transmission schedule that allows UAVs to transmit successfully and frequently to the ground station. Moreover, in order for SIC to operate, there must be a sufficient difference in received power at the ground station. However, in practice, due to the mobility and orientation of UAVs, the ground station experiences random channel gains. To this end, we adopt a discrete optimization approach to select a transmission schedule that yields the highest expected number of successes against random channel gains. We prove our approach is able to find the optimal transmission schedule. In addition, we propose a novel heuristic approach to generate a subset of transmission schedules for use in large-scale UAV networks. Our results show both proposed approaches yield high throughput under various network conditions. The average number of successful transmissions for schedules generated by our solutions is greater than 70%. In contrast, a competing approach only has an average success rate of less than 50%. Lastly, we conducted a trace-based simulation using data from a testbed with three static or mobile UAVs. Our results show that using a transmission schedule where at most two UAVs transmit yields more transmission successes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yuan, Z., Jin, J., Sun, L., Chin, K.-W., Muntean, G.-M.: Ultra-reliable IoT communications with UAVS: a swarm use case. IEEE Commun. Mag. 56(12), 90–96 (2018)

    Article  Google Scholar 

  2. Sørensen, L., Jacobsen, L., Hansen, J.: Low cost and flexible UAV deployment of sensors. Sensors 17, 154 (2017)

    Article  Google Scholar 

  3. Wang, W., Dong, C., Wang, H., Jiang, A.: Design and implementation of adaptive MAC framework for UAV ad hoc networks. In: 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), (Hefei, China), pp. 195–201, Dec. 2016

  4. Leira, F.S., Johansen, T.A., Fossen, T.I.: Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. In: IEEE Aerospace Conference, (Montana, USA), pp. 1–10, Mar. 2015

  5. Abushahma, R.I.H., Ali, M.A.M., Rahman, N.A.A., Al-Sanjary, O.I.: Comparative features of unmanned aerial vehicle (UAV) for border protection of libya: a review. In: IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA), (Penang, Malaysia), pp. 114–119, Mar. 2019

  6. Tremblay, J.A., Desrochers, A., Aubry, Y., Pace, P., Bird, D.M.: A low-cost technique for radio-tracking wildlife using a small standard unmanned aerial vehicle. J. Unmanned Vehicle Syst. 5, 102–108 (2017)

    Google Scholar 

  7. Lyu, J., Zeng, Y., Zhang, R., Lim, T.J.: Placement optimization of UAV-mounted mobile base stations. IEEE Commun. Lett. 21, 604–607 (2017)

    Article  Google Scholar 

  8. Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20, 1647–1650 (2016)

    Article  Google Scholar 

  9. Sa, I., Kamel, M., Burri, M., Bloesch, M., Khanna, R., Popović, M., Nieto, J., Siegwart, R.: Build your own visual-inertial drone: a cost-effective and open-source autonomous drone. IEEE Robot. Automat. Mag. 25, 89–103 (2018)

    Article  Google Scholar 

  10. Alzenad, M., El-Keyi, A., Yanikomeroglu, H.: 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wirel. Commun. Lett. 7, 38–41 (2018)

    Article  Google Scholar 

  11. Wang, X., Chowdhery, A., Chiang, M.: SkyEyes: Adaptive video streaming from UAVs. In: Proceedings of the 3rd Workshop on Hot Topics in Wireless, (New York, USA), pp. 2–6, Oct. 2016

  12. Wu, Q., Liu, L., Zhang, R.: Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network. IEEE Wirel. Commun. 26, 36–44 (2019)

    Article  Google Scholar 

  13. Higuchi, K., Benjebbour, A.: Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transac. Commun. 98, 403–414 (2015)

    Article  Google Scholar 

  14. Yanmaz, E., Kuschnig, R., Bettstetter, C.: Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility. In: IEEE INFOCOM, (Turin, Italy), pp. 120–124, Apr. 2013

  15. Yanmaz, E., Kuschnig, R., Bettstetter, C.: Channel measurements over 802.11a-based UAV-to-ground links. In: IEEE GLOBECOM workshops (GC Wkshps), (texas, US), pp. 1280–1284, Dec. 2011

  16. Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. arXiv preprint arXiv:1602.03602, (2016)

  17. Sun, R., Matolak, D.W.: Initial results for airframe shadowing in L- and C-band air-ground channels. In: Integrated Communication, Navigation and Surveillance Conference (ICNS). Herdon, VA, USA (2015)

  18. Masadeh, A., Wang, Z., Kamal, A.E.: Reinforcement learning exploration algorithms for energy harvesting communications systems. In: IEEE ICC. Missouri, US (2018)

  19. Cai, Y., Yu, F.R., Li, J., Zhou, Y., Lamont, L.: MAC performance improvement in UAV ad-hoc networks with full-duplex radios and multi-packet reception capability. In IEEE International Conference on Communications (ICC), (Ontario, Canada), pp. 523–527, June 2012

  20. Goussevskaia, O., Wattenhofer, R.: Scheduling wireless links with successive interference cancellation. In IEEE ICCCN, (Munich, Germany), pp. 1–7, July 2012

  21. Lv, S., Wang, X., Zhou, X.: Link scheduling in wireless networks with successive interference cancellation. In: Sixth International Conference on Mobile Ad-hoc and Sensor Networks, (Hangzhou, China), pp. 61–67, Dec. 2010

  22. Jiang, A., Mi, Z., Dong, C., Wang, H.: CF-MAC: A collision-free MAC protocol for UAVs ad-hoc networks. In IEEE Wireless Communications and Networking Conference, (Doha, Qatar), pp. 1–6, Apr. 2016

  23. Lin, C. K., Kung, H. T., Lin, T. H., Tarsa, S. J., Vlah, D.: Achieving high throughput ground-to-UAV transport via parallel links. In: IEEE ICCCN, (Hawaii), pp. 1–7, July 2011

  24. Zheng, Y., Chin, K.-W., Wang, L.: Link scheduling for data collection in SIC-capable UAV networks. In: IEEE International Telecommunication Networks and Application Conference (ITNAC), (Auckland, New Zealand), pp. 1–5, Nov. 2019

  25. Say, S., Inata, H., Shimamoto, S.: A hybrid collision coordination-based multiple access scheme for super dense aerial sensor networks. In: IEEE Wireless Communications and Networking Conference, (Doha, Qatar), pp. 1–6, Apr. 2016

  26. Alshbatat, A. I., Dong, L.: Adaptive MAC protocol for UAV communication networks using directional antennas. In: International Conference on Networking, Sensing and Control (ICNSC), (Illinois, US), pp. 598–603, Apr. 2010

  27. Zhan, P., Yu, K., Swindlehurst, A.L.: Wireless relay communications with unmanned aerial vehicles: performance and optimization. IEEE Transac. Aerosp. Elect. Syst. 47, 2068–2085 (2011)

    Article  Google Scholar 

  28. Dixon, C., Frew, E.W.: Optimizing cascaded chains of unmanned aircraft acting as communication relays. IEEE J. Selected Areas Commun. 30, 883–898 (2012)

    Article  Google Scholar 

  29. Gil, S., Schwager, M., Julian, B.J., Rus, D.: Optimizing communication in air-ground robot networks using decentralized control. In: IEEE International Conference on Robotics and Automation. Alaska, US (2010)

  30. Dixon, C.: Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments. Ph.D. thesis, University of Colorado at Boulder, (2010)

  31. Mukhopadhyay, A., Mehta, N.B., Srinivasan, V.: Design and analysis of an acknowledgment-aware asynchronous MPR MAC protocol for distributed WLANs. IEEE Transac. Wirel. Commun. 12, 2068–2079 (2013)

    Article  Google Scholar 

  32. Babich, F., Comisso, M.: Theoretical analysis of asynchronous multi-packet reception in 802.11 networks. IEEE Transac. Commun. 58, 1782–1794 (2010)

    Article  Google Scholar 

  33. Zheng, P. X., Zhang, Y. J., Liew, S. C.: Multipacket reception in wireless local area networks. In: IEEE International Conference on Communications, vol. 8, (Istanbul, Turkey), pp. 3670–3675, June 2006

  34. Mollanoori, M., Ghaderi, M.: On the performance of successive interference cancellation in random access networks. In IEEE SECON, (Seoul, South Korea), pp. 461–469, June 2012

  35. Kontik, M., Ergen, S.C.: Distributed medium access control protocol for successive interference cancellation-based wireless ad hoc networks. IEEE Commun. Lett. 21, 354–357 (2017)

    Article  Google Scholar 

  36. Uddin, F., Mahmud, S.: Carrier sensing-based medium access control protocol for WLANs exploiting successive interference cancellation. IEEE Transac. Wirel. Commun. 16, 4120–4135 (2017)

    Article  Google Scholar 

  37. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K.: Non-orthogonal multiple access (NOMA) for cellular future radio access. In: IEEE VTC, (Dresden, Germany), pp. 1–5, June 2013

  38. Balevi, E., Rabee, F.T.A., Gitlin, R.D.: ALOHA-NOMA for massive machine-to-machine iot communication. In: IEEE ICC, (Missouri, US), pp. 1–5, May 2018

  39. Ding, Z., Dai, L., Poor, H.V.: MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 4, 1393–1405 (2016)

    Article  Google Scholar 

  40. Uddin, M.F.: Throughput analysis of a CSMA based WLAN with successive interference cancellation under rayleigh fading and shadowing. Wirel. Netw. 22, 1285–1298 (2016)

    Article  Google Scholar 

  41. Berenguer, I., Wang, X., Krishnamurthy, V.: Adaptive MIMO antenna selection via discrete stochastic optimization. IEEE Transac. Signal Process. 53, 4315–4329 (2005)

    Article  MathSciNet  Google Scholar 

  42. Ahmad, I., Rehman, S.-U.: Parameters estimation of nakagami probability distribution using methods of l. moments. NUST J. Eng. Sci. 8, 10–13 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadullah Kalwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was funded by the National Natural Science Foundation of China (NSFC) under Grant No. 61601159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalwar, S., Chin, KW. & Yuan, Z. Downlink Throughput Maximization in Multi-UAVs Networks Using Discrete Optimization. J Netw Syst Manage 28, 247–270 (2020). https://doi.org/10.1007/s10922-019-09505-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-019-09505-z

Keywords

Navigation