Skip to main content
Log in

The Restriction Operator on Bergman Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Motivated by questions related to the compactness of the \({\overline{\partial }}\)-Neumann operator, we study the restriction operator from the Bergman space of a domain in \(\mathbb {C}^n\) to the Bergman space of a non-empty open subset of the domain. We relate the restriction operator to the Toeplitz operator on the Bergman space of the domain whose symbol is the characteristic function of the subset. Using the biholomorphic invariance of the spectrum of the associated Toeplitz operator, we study the restriction operator from the Bergman space of the unit disc to the Bergman space of subdomains with large symmetry groups, such as horodiscs and subdomains bounded by hypercycles. Furthermore, we prove a sharp estimate of the norm of the restriction operator in case the domain and the subdomain are balls. We also study various operator theoretic properties of the restriction operator such as compactness and essential norm estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizenberg, L., Aytuna, A., Djakov, P.: Generalization of a theorem of Bohr for bases in spaces of holomorphic functions of several complex variables. J. Math. Anal. Appl. 258(2), 429–447 (2001)

    Google Scholar 

  2. Andersson, M.E.: An inverse problem connected to double orthogonality in Bergman spaces. Math. Proc. Camb. Philos. Soc. 128(3), 535–538 (2000)

    Google Scholar 

  3. Bergman, S.: The kernel function and conformal mapping, revised ed. American Mathematical Society, Providence, RI. Mathematical Surveys, No. V (1970)

  4. Catlin, D.: Boundary behavior of holomorphic functions on pseudoconvex domains. J. Differential Geom. 15(4), 605–625 (1980). 1981

  5. Coxeter, H.S.M.: Non-Euclidean Geometry. MAA Spectrum, 6th edn. Mathematical Association of America, Washington, DC (1998)

    Google Scholar 

  6. Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  7. Čučković, Ž., Şahutoğlu, S.: Essential norm estimates for the \(\overline{\partial }\)-Neumann operator on convex domains and worm domains. Indiana Univ. Math. J. 67(1), 267–292 (2018)

    Google Scholar 

  8. Dall’Ara, G.M.: On noncompactness of the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains in \({\mathbb{C}}^3\). J. Math. Anal. Appl. 457(1), 233–247 (2018)

    Google Scholar 

  9. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  10. Fu, S., Straube, E.J.: Compactness of the \(\overline{\partial }\)-Neumann problem on convex domains. J. Funct. Anal. 159(2), 629–641 (1998)

    Google Scholar 

  11. Greene, R.E., Kim, K.-T., Krantz, S.G.: The Geometry of Complex Domains. Progress in Mathematics, vol. 291. Birkhäuser Boston Inc, Boston, MA (2011)

    Google Scholar 

  12. Gustafsson, B., Putinar, M., Shapiro, H.S.: Restriction operators, balayage and doubly orthogonal systems of analytic functions. J. Funct. Anal. 199(2), 332–378 (2003)

    Google Scholar 

  13. Gunning, R.C.: Lectures on Riemann Surfaces. Princeton Mathematical Notes. Princeton University Press, Princeton, NJ (1966)

    Google Scholar 

  14. Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics, vol. 9. Walter de Gruyter & Co., Berlin (1993)

    Google Scholar 

  15. Kim, M.: The \(\overline{\partial }\)-Neumann operator and the Kobayashi metric, Ph.D. thesis, Texas A&M University (2003). http://hdl.handle.net/1969.1/94

  16. Kim, M.: The \(\overline{\partial }\)-Neumann operator and the Kobayashi metric. Ill. J. Math. 48(2), 635–643 (2004)

    Google Scholar 

  17. Kim, M.: Inheritance of noncompactness of the \(\overline{\partial }\)-Neumann problem. J. Math. Anal. Appl. 302(2), 450–456 (2005)

    Google Scholar 

  18. Lark III, J.W.: Spectral theorems for a class of Toeplitz operators on the Bergman space. Houston J. Math. 12(3), 397–404 (1986)

    Google Scholar 

  19. Luecking, D.H.: Inequalities on Bergman spaces. Ill. J. Math. 25(1), 1–11 (1981)

    Google Scholar 

  20. Luecking, D.: Closed ranged restriction operators on weighted Bergman spaces. Pac. J. Math. 110(1), 145–160 (1984)

    Google Scholar 

  21. Mitjagin, B.S., Henkin, G.M.: Linear problems of complex analysis. Uspehi Mat. Nauk 26 4(160), 93–152 (1971)

    Google Scholar 

  22. Narasimhan, R.: Several Complex Variables. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL. Reprint of the 1971 original (1995)

  23. Pflug, P.: Quadratintegrable holomorphe Funktionen und die Serre-Vermutung. Math. Ann. 216(3), 285–288 (1975)

    Google Scholar 

  24. Putinar, G., Putinar, M.: Remarks on restriction eigenfunctions in \( {{\bf C}}^n\). Electron. Trans. Numer. Anal. 25, 393–408 (2006)

    Google Scholar 

  25. Shapiro, H.S.: Stefan Bergman’s theory of doubly-orthogonal functions. An operator-theoretic approach. Proc. R. Irish Acad. Sect. A 79(6), 49–58 (1979)

    Google Scholar 

  26. Şahutoğlu, S., Straube, E.J.: Analytic discs, plurisubharmonic hulls, and non-compactness of the \(\overline{\partial }\)-Neumann operator. Math. Ann. 334(4), 809–820 (2006)

    Google Scholar 

  27. Straube, E.J.: Lectures on the \(L^2\)-Sobolev theory of the \(\overline{\partial }\)-Neumann problem. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)

  28. Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. Operator Theory: Advances and Applications, vol. 185. Birkhäuser, Basel (2008)

    Google Scholar 

  29. Zhu, K.: Operator Theory in Function Spaces, 2nd ed. Mathematical Surveys and Monographs, vol. 138. American Mathematical Society, Providence, RI (2007)

Download references

Acknowledgements

We thank Siqi Fu, Trieu Le, and László Lempert for helpful comments and discussions. We also thank the referee for many valuable suggestions and corrections which resulted in substantial improvements of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Chakrabarti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Debraj Chakrabarti was partially supported by Grant from the National Science Foundation (#1600371), a collaboration Grant from the Simons Foundation (# 316632), and also by an Early Career internal Grant from Central Michigan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, D., Şahutoğlu, S. The Restriction Operator on Bergman Spaces. J Geom Anal 30, 2157–2188 (2020). https://doi.org/10.1007/s12220-019-00178-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00178-3

Keywords

Mathematics Subject Classification

Navigation