Skip to main content
Log in

Mechanistic investigation of oxidation of metronidazole and tinidazole with N-bromosuccinimide in acid medium: A kinetic approach

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Metronidazole (MTZ) and tinidazole (TNZ) belong to nitroimidazole group of drugs used to treat infections such as ameobiasis, giardiasis and trichomoniasis. The kinetics of oxidation of MTZ and TNZ with N-bromosuccinimide (NBS) in perchloric acid medium has been investigated at 308 K. A 1:1 stoichiometry has been observed in both MTZ and TNZ cases. The oxidation reactions of both MTZ and TNZ follow the same rate law, -d[NBS]/dt = [NBS][Sub][H+]. However, in case of MTZ, at higher concentrations of H+ (0.006–0.01 mol dm−3), the rate law obtained is -d[NBS]/dt = [NBS][MTZ][H+]−1. Accelerating effect of [Cl-] and retardation of the added succinimide on the reaction rate have been observed in the case of MTZ. The reactions were examined with reference to changes in concentration of added neutral salt, ionic strength and dielectric permittivity of the medium. The overall activation parameters have been evaluated from the Arrhenius plot. The reactive oxidizing species of NBS have been determined. The main oxidation products were identified by IR and 1H NMR spectral analyses. The observed results have been explained by plausible mechanisms and the relative rate laws have been deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Isselbacher, E. Braunwald, J.D. Wilson, J.B. Martin, A.S. Fauci, D.L. Kasper, Harrison’s Principles of Internal Medicine, 13th ed., McGraw-Hill Inc., New York, 1994, pp. 594, 595, 597, 602 and 881.

    Google Scholar 

  2. C.O. Wilson, O. Gisvold, R.F. Doerge, Text Book of Organic Medicinal and Pharmaceutical Chemistry, 6th ed., J.B. Lippincott Co., Toronto, 1971, p. 216.

    Google Scholar 

  3. R. Filler, Chem. Rev. 63 (1963) 21.

    CAS  Google Scholar 

  4. S.K. Mavalangi, M.R. Kembhavi, S.T. Nandibewoor, Turk. J. Chem. 25 (2001) 355.

    CAS  Google Scholar 

  5. G. Gopalakrishnan, J.L. Hogg, J. Org. Chem. 50 (1985) 1206.

    CAS  Google Scholar 

  6. A.K. Singh, S. Rahmani, V. Singh, V. Gupta, Bharat Singh, Oxid. Commun. 23 (2000) 55.

    CAS  Google Scholar 

  7. C.P. Kathari, P.D. Pol, S.T. Nandibewoor, Inorg. React. Mechanism 3 (2002) 213.

    Google Scholar 

  8. K. Basavaiah, U.R. Anil kumar, Bull. Chem. Soc. Ethiopia 22 (2008) 135.

    Google Scholar 

  9. K. Basavaiah, U.R. Anil kumar, Proc. National. Acad. Sci. India 77A (2007) 301.

    Google Scholar 

  10. K. Basavaiah, U.R. Anil kumar, V. Ramakrishna, Indian J.Chem. Tech. 14 (2007) 313.

    CAS  Google Scholar 

  11. K. Basavaiah, V. Ramakrishna, B. Somashekara, Acta Pharma 57 (2007) 87.

    CAS  Google Scholar 

  12. R. Ramachandrappa, Puttaswamy, S.M. Mayanna, N.M. Made Gowda, Int. J. Chem. Kinet. 30 (1998) 407.

    CAS  Google Scholar 

  13. K.N. Mohana, P.M. Ramdas Bhandarkar, J. Chin. Chem. Soc. 54 (2007) 1223.

    CAS  Google Scholar 

  14. F. Feigl, V. Anger, Spot Tests in Organic Analysis, Elsevier, New York, 1975, pp. 132, 195 and 203.

    Google Scholar 

  15. A.I. Vogel, Text Book of Practical Organic Chemistry, 5th ed., ELBS & Longman, London, 1989, p. 1332.

    Google Scholar 

  16. C.P. Kathari, R.M. Mulla, S.T. Nandibewoor, Oxid. Commun. 28 (2005) 579.

    CAS  Google Scholar 

  17. B. Singh, L. Pandey, J. Sharma, S.M. Pandey, Tetrahedran 38 (1982) 169.

    CAS  Google Scholar 

  18. B. Thimmegowda, J. Iswara Bhat, Indian J. Chem. 28A (1989) 43.

    Google Scholar 

  19. A.K. Singh, S. Rahmani, V.K. Singh, V. Gupta, D. Kesarwani, B. Singh, Indian J. Chem. 40A (2001) 519.

    CAS  Google Scholar 

  20. G. Gopalakrishnan, B.R. Pai, N. Venkatasubramanian, Indian J. Chem. B 19 (1980) 293.

    Google Scholar 

  21. J.M. Antelo, F. Arce, J. Crugeiras, M. Parajo, J. Phys. Org. Chem. 10 (1997) 631.

    CAS  Google Scholar 

  22. N. Venkatasubramanian, V. Thiagarajan, Can. J. Chem. 47 (1969) 694; Indian J. Chem. 8 (1970) 809.

    CAS  Google Scholar 

  23. C. Karunakaran, K. Ganapathy, J. Phy. Org. Chem. 3 (1990) 235.

    CAS  Google Scholar 

  24. A.L. Harihar, M.R. Kembhavi, S.T. Nindibewoor, J. Indian Chem. Soc. 76 (1999) 128.

    CAS  Google Scholar 

  25. E.S. Amis, Solvent Effects on Reaction Rates and Mechanisms, Academic Press, New York, 1966.

    Google Scholar 

  26. B. Bhargava, B. Sethuram, T.N. Rao, Indian J. Chem. 16A (1978) 651.

    CAS  Google Scholar 

  27. K.J. Laidler, Chemical Kinetics, Tata-McGraw-Hill, Mumbai, India, 1965, p. 227.

    Google Scholar 

  28. Puttaswamy, J.P. Shubha, R.V. Jagadeesh, Transition. Met. Chem. 32 (2007) 991.

    Google Scholar 

  29. P. Spacu, H. Dumitrescu, An. Univ. Bucaresti. Chim. 19 (1970) 17.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mohana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohana, K.N., Ramdas Bhandarkar, P.M. Mechanistic investigation of oxidation of metronidazole and tinidazole with N-bromosuccinimide in acid medium: A kinetic approach. JICS 6, 277–287 (2009). https://doi.org/10.1007/BF03245835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03245835

Keywords

Navigation