Skip to main content
Log in

Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Marker-free transgenic Camelina sativa (L.) plants carrying a synthetic gene for cecropin P1, an antimicrobial peptide, under the control of the cauliflower mosaic virus 35S RNA promoter have been obtained and analyzed. The plants were transformed with an agrobacterial binary vector free of selective genes of antibiotic and herbicide resistance. The marker-free transformants were screened via measurement of the antibacterial activity of cecropin P1 and enzyme immunoassay. The obtained plants exhibited an increased resistance to infection with the bacteria Erwinia carotovora, the fungi Fusarium graminearum, and oxidative stress during infection. Analysis of the fatty acid composition of seed oil showed an increased amount of α-linolenic acid in the transgenic Camelina lines as compared to unmodified plants. The results indicate that the cecropin P1 gene can be included in an integral antistress plant-protective system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Vasil’chenko, I.T., Genus 687. Camelina Crantz, in Flora SSSR. V 30 tomakh (Flora of the USSR, in 20 vols), Komarov, V.L., Ed.-in-Chief, Bush, N.A, Ed., Leningrad: Akad. Nauk SSSR, 1939, vol. VIII, pp. 596–602.

  2. Putnam, D.H., Budin, J.T., Field, L.A., and Breene, W.M., Camelina: a promising low-input oilseed, in New Crops, Janick, J. and Simon, J.E., New York: Wiley, 1993, pp. 314–322. http://www.hort. purdue.edu/newcrop/proceedings1993/v2-314.html

  3. Zubr, J., Oil-seed crop: Camelina sativa, Ind. Crop Prod., 1997, vol. 6, pp. 113–119. https://doi.org/10.1016/S0926-6690

  4. Liu, Z., Brost, J., Hutcheon, C., et al., Transformation of oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants, In Vitro Cell. Dev. Biol. Plant., 2012, vol. 48, pp. 462–468. https://doi.org/10.1007/s11627-012-9459-7

    Article  Google Scholar 

  5. Motesinos, E., Antimicrobial peptides and plant disease control, FEMS Microbiol. Lett., 2007, vol. 210, pp. 1–11. https://doi.org/10.1111/j.1574-6968.2007.00683.x

    Article  CAS  Google Scholar 

  6. Andersson, M., Boman, A., and Boman, H.G., Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides, Cell. Mol. Life Sci., 2003, vol. 60, pp. 599–606. https://doi.org/10.1007/s000180300051

    Article  CAS  PubMed  Google Scholar 

  7. Martemyanov, K.A., Spirin, A.S., and Gudkov, A.T., Synthesis, cloning and expression of genes for antibacterial peptides: cecropin, magainin, and bombinin, Biotechnol. Lett., 1996, vol. 18, pp. 1357–1362. https://doi.org/10.1007/BF00129335

    Article  CAS  Google Scholar 

  8. Zakharchenko, N.S., Rukavtsova, E.B., Gudkov, A.T., et al., Expression of the artificial gene encoding anti-microbial peptide cecropin P1 increases the resistance of transgenic potato plants to potato blight and white rot, Dokl. Biol. Sci., 2007, vol. 415, pp. 267–269. https://doi.org/10.1134/S0012496607040059

    Article  CAS  PubMed  Google Scholar 

  9. Zakharchenko, N.S., Kalyaeva, M.A., and Bur’yanov, Ya.I., Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial phytopathogens, Russ. J. Genet., 2013, vol. 49, no. 5, pp. 523–529. https://doi.org/10.7868/S0016675813050147

    Article  CAS  Google Scholar 

  10. Angenon, G., Dillen, W., and van Montagu, M., Antibiotic-resistance markers for plant transformation, in Plant Molecular Biology Manual, Gelvin, S.B. and Schilperoort, R.A., Eds., Dordrecht: Kluwer, 1994, pp. 1–13.

    Google Scholar 

  11. Herrera-Estrella, L., Leon, P., Olsson, O., and Teeri, T.H., Reporter genes for plants, in Plant Molecular Biology Manual, Gelvin, S.B. and Schilperoort, R.A., Eds., Dordrecht: Kluwer, 1994, pp. 1–32.

    Google Scholar 

  12. Schmit, F., Oakeley, E.J., and Jost, J.P., Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants, J. Biol. Chem., 1997, vol. 272, pp. 1534–1540.

    Article  Google Scholar 

  13. Yisraeli, J. and Szyf, M., Gene methylation patterns and expression, in DNA Methylation: Biochemistry and Biological Significance, Razin, A., Eds., Berlin: Springer Verlag, 1984.

    Google Scholar 

  14. Etchberger, J.F. and Hobert, O., Vector-free DNA constructs improve transgene expression in C. elegans,Nat. Methods, 2008, vol. 5, p. 3.

    Article  CAS  Google Scholar 

  15. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  16. Ooms, G., Hooykaas, J.J., et al., Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region, Plasmid, 1982, vol. 7, pp. 15–29.

    Article  CAS  Google Scholar 

  17. Zakharchenko, N.S., Pigoleva, S.V., Yukhmanova, A.A., and Bur’yanov, Ya.I., Use of the gene of antimicrobial peptide cecropin P1 for producing marker-free transgenic plants, Russ. J. Genet., 2009, vol. 45, no. 8, pp. 929–933. https://doi.org/10.1134/S1022795409080067

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E.E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  19. Das, P. and Joshi, N.C., Minor modifications in obtainable Arabidopsis floral dip method enhances transformation efficiency and production of homozygous transgenic lines harboring a single copy of transgene, Adv. Biosci. Biotechnol., 2011, vol. 2, pp. 59–67.

    Article  CAS  Google Scholar 

  20. Naumov, N.A., Metody mikologicheskikh i fitopatologicheskikh issledovanii (Methods of Mycological and Phytopathological Studies), Leningrad: Sel’khozizdat, 1937.

  21. Cljugh, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianta,Plant J., 1998, vol. 16, pp. 735–743.

    Article  Google Scholar 

  22. Jan, P.-S., Huang, H.-Y., and Chen, H.-M., Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases, Appl. Environ. Microbiol., 2010, vol. 4, pp. 769–775.

    Article  Google Scholar 

  23. Promega Protocols and Application Guide, Madison, USA, 1991, pp. 262–265.

  24. Rodionova, L.N., Zagranichny, V.E., Rodionov, I.L., et al., The total solid phase synthesis of the subunit of cGMP phosphodiesterase from bovine retina and some physicochemical properties of the synthetic protein, Russ. J. Bioorg. Chem., 1997, vol. 23, no. 12, pp. 823–838.

    Google Scholar 

  25. Edwards, K., Johnstone, C., and Thompson, C., A simple and rapid method for the preparation of plant genomic DNA for PCR analysis, Nucleic Acids Res., 1991, vol. 19, p. 1349. https://doi.org/10.1093/nar/19.6.1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohshima, M., Mitruhara, I., Okamoto, M., et al., Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect, J. Biochem., 1999, vol. 125, pp. 431–435.

    Article  CAS  Google Scholar 

  27. Draper, J., Scott, R., and Hamil, J., Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and the Ri plasmid of A. rhizogenes, in Plant Genetic Transformation and Gene Expression. A Laboratory Manual, Draper, J., Scott, R., Armitage, P., and Walden, R., Eds., Oxford: Blackwell Sci. Publ., 1988, pp. 69–160.

    Google Scholar 

  28. Bradford, M.M., A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254. https://doi.org/10.1016/0003-2697

  29. Nariyoshi, K., Hitoshi, K., and Takayuki, A.B.E., Control of tomato bacterial wilt without disinfections using a new functional polymer that captures microbial cells alive on the surface and is highly biodegradable, BioSci. Biotechnol. Biochem., 2005, vol. 69, pp. 326–333. https://doi.org/10.1271/bbb.69.326

    Article  Google Scholar 

  30. Beauchamp, C.O. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  Google Scholar 

  31. Griffiths, M.J., van Hille, R.P., and Harrison, S.T., Selection of direct transesterification as the preferred method for essay of fatty acid content of microalgae, Lipids, 2010, vol. 45, no. 11, pp. 1053–1060. . PMID: https://doi.org/10.1007/s11745-010-3468-220820931

    Article  CAS  PubMed  Google Scholar 

  32. Mittova, V., Tal, M., Volokita, M., and Guy, M., Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii,Plant Cell Environ., 2003, vol. 26, pp. 845–856. PubMed: 12803612

    Article  CAS  Google Scholar 

  33. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 141–154. https://doi.org/10.1134/S1021443712020057

    Article  CAS  Google Scholar 

  34. Zakharchenko, N.S., Buryanov, Ya.I., Lebedeva, A.A., et al., Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1, Russ. J. Plant Physiol, 2013, vol. 60, no.,3 pp. 411–419. https://doi.org/10.1134/S1021443713030163

  35. Zakharchenko, N.S., Furs, O.V., Pigoleva, S.V., et al., Biological activity of leaf extracts from cecropin P1-synthesizing Kalanchoe plants: pharmacological prospects, Russ. J. Plant Physiol, 2018, vol. 65, no. 1, pp. 136–142. https://doi.org/10.7868/S0015330318010074

    Article  CAS  Google Scholar 

  36. Lebedeva, A.A., Zacharchenko, N.S., Trubnikova, E.V., et al., Bactericide, immunomodulating, and wound healing properties of transgenic Kalanchoe pinnata synergize with antimicrobial peptide cecropin P1 in vivo, J. Immunol. Res., 2017. https://doi.org/10.1155/2017/4645701

  37. Zakharchenko, N.S., Belous, A.S., Biryukova, Y.K., et al., Immunomodulating and re-vascularizing activity of Kalanchoe pinnata synergize with fungicide activity of biogenic peptide cecropin P1, J. Immunol. Res., 2017. https://doi.org/10.1155/2017/3940743

  38. Belous, A.S., Shevelev, A.V., Trubnikova, E.V., et al., Wound treatment with transgenic Kalanchoe leaf extract with cecropin P1 (histological examination), Vestn. Ross. Gos. Med. Univ., 2017, vol. 1, pp. 70–78.

    Google Scholar 

  39. Campo, S., Manrique, S., Garcia-Martinez, J., and San, SegundoS., Production of cecropin A in transgenic rice plants has an impact on host gene expression, Plant Biotechnol. J., 2008, vol. 6, pp. 585–608. https://doi.org/10.1111/j.1467-7652.2008.00339.x

    Article  CAS  PubMed  Google Scholar 

  40. Goyal, R.K., Hancock, R.E.W., Mattoo, A.K., and Misra, S., Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses, PLoS One, 2013, vol. 8, no. 10. e77505. PubMed: PMC3797780.

  41. Murphy, D.J., The molecular organisation of the photosynthetic membranes of higher plants, Biochim. Biophys. Acta, 1986, vol. 864, pp. 33–94.

    Article  CAS  Google Scholar 

  42. Liu, X-Y., Li, B., Yang, J-H., et al., Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress, Photosynthetica, 2008, vol. 46, no. 2, pp. 185–192.

    Article  CAS  Google Scholar 

  43. Tarchevsky, I.A., The regulatory role of the degradation of biopolymers and lipids, Russ. J. Plant Physiol., 1992, vol. 39, pp. 1215–1223.

    Google Scholar 

  44. Cherian, G., Campbell, A., and Parker, T., Egg quality and lipid composition of eggs from hens fed Camelina sativa,J. Appl. Poult. Res., 2009, vol. 18, pp. 143–150. https://doi.org/10.3382/japr.2008-00070

    Article  CAS  Google Scholar 

  45. Davis, P.B., The invasion potential and competitive ability of Camelina sativa (L.) Crantz (Camelina) in rangeland ecosystems, MSc Thesis, Bozeman, MT, USA: Montana State University, 2010. http://etd.lid.montana.edu/etd/2010/davis/DavisP0510.pdf

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.L. Rodionov for the synthesis of the cecropin P1 peptide and to A.G. Laman for the production of antibodies to cecropin P1 and KLH-CEC conjugates.

Funding

The work was financially supported by the State Assignments no. 0101-2014-0046 and RK 01201352439 with partial financing from the Russian Foundation for Basic Research (projects 18-08-00752 and 16-04-00623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Zakharchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Gordon

Abbreviations: AMPs—antimicrobial peptides; сесР1—cecropin P1; cecP1—cecP1 gene; CaMV 35S—35S RNA promoter of cauliflower mosaic virus; dNTP—deoxynucleoside triphosphate(s); LB medium—nutrient medium of Luriya Bertani; MS medium—hormone-free Murashige—Skoog medium; OD600, optical density at wavelength of 600 nm; PAGE—polyacrylamide gel electrophoresis; PGA—potato-glucose agar; SOD—superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharchenko, N.S., Furs, O.V., Pigoleva, S.V. et al. Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene. Appl Biochem Microbiol 55, 888–898 (2019). https://doi.org/10.1134/S0003683819090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819090096

Keywords:

Navigation