Skip to main content
Log in

Further Consequences of the Colorful Helly Hypothesis

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal {F}\) be a family of convex sets in \({\mathbb {R}}^d,\) which are colored with \(d+1\) colors. We say that \(\mathcal {F}\) satisfies the Colorful Helly Property if every rainbow selection of \(d+1\) sets, one set from each color class, has a non-empty common intersection. The Colorful Helly Theorem of Lovász states that for any such colorful family \(\mathcal {F}\) there is a color class \(\mathcal {F}_i\subset \mathcal {F},\) for \(1\le i\le d+1,\) whose sets have a non-empty intersection. We establish further consequences of the Colorful Helly hypothesis. In particular, we show that for each dimension \(d\ge 2\) there exist numbers f(d) and g(d) with the following property: either one can find an additional color class whose sets can be pierced by f(d) points, or all the sets in \(\mathcal {F}\) can be crossed by g(d) lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This can be attributed to the integer coefficients of the variables \(\{f(e)\}_{e\in {{\mathcal {E}}}_{\mathcal {A}}}\) and \(\{g(e)\}_{e\in {{\mathcal {E}}}_{\mathcal {B}}}\) in the linear inequalities that “delimit” the domain; see, e.g., [19, Thm. 10.1.1, Chap. 10].

References

  1. Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak \(\varepsilon \)-nets for convex hulls. Comb. Probab. Comput. 1(3), 189–200 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Kalai, G.: Bounding the piercing number. Discrete Comput. Geom. 13(3–4), 245–256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Kalai, G., Matoušek, J., Meshulam, R.: Transversal numbers for hypergraphs arising in geometry. Adv. Appl. Math. 29(1), 79–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amenta, N., De Loera, J.A., Soberón, P.: Helly’s theorem: new variations and applications. In: Harrington, H.A., Omar, M., Wright, M. (eds.) Algebraic and Geometric Methods in Discrete Mathematics. Contemporary Mathematics, vol. 685, pp. 55–95. American Mathematical Society, Providence (2017)

    MATH  Google Scholar 

  6. Arocha, J.L., Bárány, I., Bracho, J., Fabila, R., Montejano, L.: Very colorful theorems. Discrete Comput. Geom. 42(2), 142–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bárány, I.: Tensors, colours, octahedra. In: Matoušek, J., Nešetřil, J., Pellegrini, M. (eds.) Geometry, Structure and Randomness in Combinatorics. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 18, pp. 1–17. Edizioni della Normale, Pisa (2015)

    Google Scholar 

  9. Boris, B., Matoušek, J., Gabriel, N.: Lower bounds for weak epsilon-nets and stair-convexity. Isr. J. Math. 182(1), 199–228 (2011). https://doi.org/10.1007/s11856-011-0029-1

    Article  MATH  MathSciNet  Google Scholar 

  10. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Sharir, M., Welzl, E.: Improved bounds on weak \(\epsilon \)-nets for convex sets. Discrete Comput. Geom. 13(1), 1–15 (1995). https://doi.org/10.1007/BF02574025

    Article  MATH  MathSciNet  Google Scholar 

  11. Danzer, L.: Über ein Problem aus der kombinatorischen Geometrie. Arch. Math. (Basel) 8(5), 347–351 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: 1963 Proceedings of the Symposium on Pure Mathematics, vol. VII, pp. 101–180. American Mathematical Society, Providence (1963)

  13. Eckhoff, J.: Chapter: Helly, Radon, and Carathéodory type theorems. In: Handbook of Convex Geometry, pp. 389–448. Elsevier, Amsterdam (1990)

  14. Goodman, J.E., Pollack, R., Wenger, R.: Chapter: geometric transversal theory. In: New Trends in Discrete and Computational Geometry, pp. 163–198. Springer, Berlin (1993)

  15. Hadwiger, H., Debrunner, H.: Über eine Variante zum Helly’schen Satz. Arch. Math. (Basel) 8, 309–313 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. Jahresber. Dtsch. Math. Ver. 32, 175–176 (1923)

    MATH  Google Scholar 

  17. Holmsen, A.F., Pach, J., Tverberg, H.: Points surrounding the origin. Combinatorica 28(6), 633–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katchalski, M., Liu, A.: A problem of geometry in \(R^n\). Proc. Am. Math. Soc. 75(2), 284–288 (1979)

    MATH  Google Scholar 

  19. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  Google Scholar 

  20. Rubin, N.: An improved bound for weak epsilon-nets in the plane. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 224–235 (2018). https://doi.org/10.1109/FOCS.2018.00030

  21. Santaló, L.: Un teorema sobre conjuntos de paralelepípedos de aristas paralelas. Publ. Inst. Mat. Univ. Nacl Litoral II(4), 49–60 (1940)

    Google Scholar 

  22. Wenger, R., Holmsen, A.: Chapter: Helly-type theorems and geometric transversals. In: Handbook of Discrete and Computational Geometry, 3rd edn, pp. 91–124. CRC Press LLC, Boca Raton (2017)

Download references

Acknowledgements

The authors thank the anonymous SoCG and DCG referees for valuable comments which helped to improve the presentation. An extended abstract of this paper has appeared in Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018). The project leading to this application has received funding from European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 678765. The first and third authors were also supported by Grant 1452/15 from Israel Science Foundation. The third author was also supported by Ralph Selig Career Development Chair in Information Theory and Grant 2014384 from the U.S.–Israeli Binational Science Foundation. The second author was supported by PAPIIT Project IA102118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natan Rubin.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Sandoval, L., Roldán-Pensado, E. & Rubin, N. Further Consequences of the Colorful Helly Hypothesis. Discrete Comput Geom 63, 848–866 (2020). https://doi.org/10.1007/s00454-019-00085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00085-y

Keywords

Mathematics Subject Classification

Navigation