Skip to main content
Log in

Fatigue Hysteresis Loops Simulation of SiCf /Ti Composites under Two-Stage Cyclic Loading

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The fatigue hysteresis behavior of SiCf/Ti composites at two-stage cyclic loading has been investigated in present analysis. The effect of fiber volume fraction, loading sequence and fiber shape parameters on the fatigue hysteresis loops of composites were analyzed. Based on the law of interface slip during loading and unloading, the hysteresis loop models considering the failure criterion of fibers and interface shear stress degradation have been developed. Then, the validity of the model was confirmed by experiments. The study provides a basis and reference for further study of mechanical properties under multistage or even random cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Pank, D.R., Jackson, J.J.: Metal- matrix composite processing technologies for aircraft engine applications[J]. J Mater Eng Perform. 2(3), 341–346 (1993)

    Article  Google Scholar 

  2. Peihuan, L.I., Zhang, Y., Wang, T., et al.: Research Progress on continuous SiC Fiber reinforced metal matrix composite[J]. J. Mater. Eng. 44(8), 121–129 (2016)

    Google Scholar 

  3. Zweben, C.: Advanced composites for aerospace applications : a review of current status and future prospects[J]. Composites. 12(4), 235–240 (1981)

    Article  Google Scholar 

  4. Sun, Y.J., Zhong, W.S., Shi, H.F., et al.: A review on metal matrix composites[J]. Foundry Technology. (2004)

  5. Wu, G.: Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica. 31(5), 1228–1237 (2014)

    Google Scholar 

  6. Wang, T., Zhao, Y., Fu, S., et al.: Progress and key problems in research and fabrication of Fiber reinforced metal matrix composite[J]. J Aeronautical Materials. 33(2), 87–96 (2013)

    Google Scholar 

  7. Walls, D.P., Zok, F.W.: Interfacial fatigue in a fiber reinforced metal matrix composite[J]. Acta Metall. Mater. 42(8), 2675–2681 (1994)

    Article  Google Scholar 

  8. Xuan, F.: Fatigue damage of laminated composites and two stage loading life prediction[J]. Chinese J Appl Mech. 15(1), 90–94 (1998)

    Google Scholar 

  9. Feng, G.H., Yang, Y.Q., Luo, X., Li, J., Huang, B., Chen, Y.: Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite[J]. Composites Part B. 68, 336–342 (2015)

    Article  Google Scholar 

  10. Chen, Y., Shi, Z., Zhu, Q.: Interfacial DEBONDING of composite under two-stage loading[j]. Acta Materiae Compositae Sinica. 21(4), 140–145 (2004)

    Google Scholar 

  11. Feng, G., Yang, Y., Li, J., et al.: Fatigue behavior and damage evolution of SiC Fiberreinforced Ti-6Al-4V alloy matrix composites[J]. Rare Metal Materials Eng. 43(9), 2049–2054 (2014)

    Article  Google Scholar 

  12. Juntao, C.: Study on Fatigue Behavior of Carbon-Fiber Reinforced Composite under High and Low Cyclic Loading [D]. Harbin Institute of Technology (2017)

  13. LiYang, X., WengGe, L.V., ZhaoFeng, S.: Experimental study on fatigue damage under two level loading[J]. J Mech Strength. 16(3), 647–656 (1994)

    Google Scholar 

  14. Gao, X., Fang, G., Song, Y.: Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B. 56(1), 92–99 (2014)

    Article  Google Scholar 

  15. Sun, Q., Luo, X., Yang, Y.Q., Huang, B., Jin, N., Zhang, W., Zhao, G.M.: Micromechanical analysis of fiber and titanium matrix interface by shear lag method[J]. Composites Part B. 79, 466–475 (2015)

    Article  Google Scholar 

  16. Evans, A.G., Zok, F.W., Mcmeeking, R.M.: Fatigue of ceramic matrix composites[J]. Acta Metall. Mater. 43(3), 859–875 (1995)

    Article  Google Scholar 

  17. Smith, R.L.A.: Probability model for fibrous composites with local load sharing[J]. Proc. R. Soc. Lond. 372(1751), 539–553 (1980)

    Article  Google Scholar 

  18. Longbiao, L.: A hysteresis dissipated energy-based damage parameter for life prediction of carbon fiber-reinforced ceramic-matrix composites under fatigue loading[J]. Compos. Part B. 82, 108–128 (2015)

    Article  Google Scholar 

  19. Lou, J.H., Yang, Y.Q., Sun, Q., Li, J., Luo, X.: Study on longitudinal tensile properties of SiC f/Ti–6Al–4V composites with different interfacial shear strength[J]. Mater Sci Eng A. 529(1), 88–93 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Basic Research Program of China, National Natural Science Foundation of China (51675266), Aeronautical Science Foundation of China (2014ZB52024), Foundation of Graduate Innovation Center in NUAA (no.kfjj20170208).Foundation of Graduate Innovation Center in NUAA (no.kfjj20170220),Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_0314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Sun, Z., Lu, Q. et al. Fatigue Hysteresis Loops Simulation of SiCf /Ti Composites under Two-Stage Cyclic Loading. Appl Compos Mater 26, 1041–1057 (2019). https://doi.org/10.1007/s10443-019-09765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09765-7

Keywords

Navigation