Skip to main content

Advertisement

Log in

Measuring and Improving Eco-efficiency

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

As energy and environmental issues continue to generate social concerns, firms are pushed to alleviate their energy and environmental externalities from economic activities and network operations while pursuing economic interests. A comprehensive performance evaluation involving both productive and environmental factors is therefore desired by firms to aggregate multiple aspects into condensed information to facilitate decision-making. In this study, we develop a new eco-efficiency measure for energy-intensive economic activities, which integrates productive and environmental factors in the presence of undesirable outputs. The proposed measure has the following merits in comparison with a majority of existing ones that have been widely used in energy- and environment-related areas. It guarantees Pareto-Koopmans eco-efficiency because only non-dominated entities are measured as eco-efficient. It also captures any actual fluctuations in inputs, desirable outputs, and undesirable outputs, as it proves to be strongly monotonic in all input and output dimensions. It has a positive significance for promoting undesirable output abatement, because it stimulates scale improvement for entities in pursuit of economies of scale. It also provides great flexibility of improvement for individual inputs and outputs to achieve eco-efficiency. The marginal abatement costs of undesirable outputs are estimated to facilitate managing the potential tradeoff between undesirable output abatement and desirable output production. We also extend it to weighted eco-efficiency measures for specific situations wherever necessary. Its practicability and comparison with existing models are illustrated by an empirical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambec, S., & Lanoie, P. (2008). Does it pay to be green? A systematic overview. Academy of Management Perspectives, 22, 45–62.

    Article  Google Scholar 

  2. Banker, R. D., & Cooper, W. W. (1994). Validation and generalization of DEA and its uses. Top, 2, 249–314.

    Article  Google Scholar 

  3. Banker, R. D., Charnes, R. F., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30, 1078–1092.

    Article  Google Scholar 

  4. Bazaraa, M. S., Sherahi, H. D., & Shetty, C. M. (1993). Nonlinear programming: theory and algorithms. New York: Wiley.

    Google Scholar 

  5. Bostian, M. B., Färe, R., Grosskopf, S., & Lundgren, T. (2017). Network representations of pollution-generating technologies. International Review of Environmental and Resource Economics, 11, 193–231.

    Article  Google Scholar 

  6. Briec, W. (1997). A graph-type extension of Farrell technical efficiency measure. Journal of Productivity Analysis, 8, 95–110.

    Article  Google Scholar 

  7. Brinkerhoff, R. O., & Dressler, D. E. (1990). Productivity measurement: a guide for managers and evaluators. In Applied Social Research Methods Series, 19. London: Sage.

    Google Scholar 

  8. Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70, 407–419.

    Article  Google Scholar 

  9. Chandler, A. D., Jr. (1993). The visible hand: the management revolution in American business. Cambridge: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  10. Charles, A., Cooper, W., Golarny, B., Seiford, L., & Stuty, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30, 81–107.

    Google Scholar 

  11. Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9,181–186.

  12. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  13. Chen, C.-M., & Delmas, M. A. (2012). Measuring eco-inefficiency: a new frontier approach. Operations Research, 60, 1064–1079.

    Article  Google Scholar 

  14. Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related CO2 emissions in China: a slacks-based efficiency measure. Applied Energy, 98, 198–208.

    Article  Google Scholar 

  15. Chung, Y. (1996). Directional distance functions and undesirable outputs. Ph.D. dissertation, Southern Illinois University at Carbondale.

  16. Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51, 229–240.

    Article  Google Scholar 

  17. Cooper, W. W., & Pastor, J. T. (1995). Global efficiency measurement in DEA. Working paper, Departamento de Estadística e Investigación Operativa, Universidad de Alicante, Alicante.

  18. Cooper, W. W., Park, K. S., & Pastor, J. T. (1999). RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. Journal of Productivity Analysis, 11, 5–42.

    Article  Google Scholar 

  19. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-Solver Software. New York: Springer.

    Google Scholar 

  20. Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modeling pollution-generating technologies in performance benchmarking: recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250, 347–359.

    Article  Google Scholar 

  21. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19, 273–292.

    Article  Google Scholar 

  22. Delmas, M. A., & Blass, V. D. (2010). Measuring corporate environmental performance: the trade-offs of sustainability ratings. Business Strategy and the Environment, 19, 245–260.

    Article  Google Scholar 

  23. Delmas, M. A., & Nairn-Birch, N. S. (2011). Is the tail wagging the dog? An empirical analysis of corporate carbon footprints and financial performance. In Working paper, Institute of the Environment and Sustainability. Los Angeles: University of California, Los Angeles.

    Google Scholar 

  24. Färe, R., & Grosskopf, S. (2004a). New directions: efficiency and productivity. New York: Springer.

    Google Scholar 

  25. Färe, R., & Grosskopf, S. (2004b). Modeling undesirable factors in efficiency evaluation: comment. European Journal of Operational Research, 157, 242–245.

    Article  Google Scholar 

  26. Färe, R., & Lovell, C. A. K. (1978). Measuring the technical efficiency of production. Journal of Economic Theory, 19, 150–162.

    Article  Google Scholar 

  27. Färe, R., & Primont, D. (1995). Multi-output production and duality: theory and applications. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  28. Färe, R., Lovell, C. A. K., & Zieschang, K. (1983). Measuring the technical efficiency of multiple outputs technologies. In W. Eichhorn, R. Henn, K. Neumann, & R. W. Shephard (Eds.), Quantitative Studies on Production and Prices. Würzburg: Physica-Verlag.

    Google Scholar 

  29. Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of production. Dordrecht: Kluwer-Nijhoff Publishing.

    Book  Google Scholar 

  30. Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The Review of Economics and Statistics, 71, 90–98.

    Article  Google Scholar 

  31. Färe, R., Grosskopf, S., Lovell, C. A. K., & Yaisawarng, S. (1993). Derivation of shadow prices for undesirable outputs: a distance function approach. The Review of Economics and Statistics, 75, 374–380.

    Article  Google Scholar 

  32. Färe, R., Grosskopf, S., Noh, D. W., & Weber, W. (2005). Characteristics of a polluting technology: theory and practice. Journal of Econometrics, 126, 469–492.

    Article  Google Scholar 

  33. Färe, R., Grosskopf, R., & Weber, W. (2006). Shadow prices and pollution costs in the U.S. agriculture. Ecological Economics, 56, 89–103.

    Article  Google Scholar 

  34. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A, Statistics in Society, 120, 253–281.

    Article  Google Scholar 

  35. Førsund, F. R. (2009). Good modelling of bad outputs: Pollution and multiple output production. International Review of Environmental and Resource Economics, 3, 1–38.

    Article  Google Scholar 

  36. Førsund, F. R. (2018). Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance. Empirical Economics, 54, 67–99.

  37. Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83, 605–616.

    Article  Google Scholar 

  38. Hampf, B. (2014). Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants. Journal of Productivity Analysis, 41, 457–473.

    Article  Google Scholar 

  39. Hampf, B., & Rodseth, K. L. (2015). Carbon dioxide emission standards for U.S. power plants: an efficiency analysis perspective. Energy Economics, 50, 140–153.

    Article  Google Scholar 

  40. Hua, Z., & Bian, Y. (2007). DEA with undesirable factors. In J. Zhu & W. Cook (Eds.), Modeling data irregularities and structural complexities in data envelopment analysis (pp. 103–122). New York: Springer.

    Chapter  Google Scholar 

  41. Hua, Z., Bian, Y., & Liang, L. (2007). Eco-efficiency analysis of paper mills along the Huai River: an extended DEA approach. Omega, 35, 578–587.

    Article  Google Scholar 

  42. King, A. A., & Lenox, M. J. (2002). Exploring the locus of profitable pollution reduction. Management Science, 48, 289–299.

    Article  Google Scholar 

  43. Koopmans, T. C. (1951). An analysis of production as an efficient combination of activities. In T. C. Koopmans (Ed.), Activity Analysis of Production and Allocation (pp. 33–97). New York: Wiley.

    Google Scholar 

  44. Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87, 1077–1082.

    Article  Google Scholar 

  45. Lee, J. D., Park, J., & Kim, T. (2002). Estimation of the shadow prices of pollutants with production/environment inefficiency taken into account: a nonparametric directional distance function approach. Journal of Environmental Management, 64, 365–375.

    Article  Google Scholar 

  46. Luenberger, D. G. (1992). Benefit functions and duality. Journal of Mathematical Economics, 21, 461–481.

    Article  Google Scholar 

  47. Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64, 117–135.

    Article  Google Scholar 

  48. Odum, H. T. (1996). Environmental accounting: energy and environmental decision making. Hoboken: Wiley.

    Google Scholar 

  49. Olsthoorn, X., Tyteca, D., Wehrmeyer, W., & Wagner, M. (2001). Environmental indicators for business: a review of the literature and standardization methods. Journal of Cleaner Production, 9, 453–463.

    Article  Google Scholar 

  50. Orlitzky, M., Schmidt, F. L., & Rynes, S. L. (2003). Corporate social and financial performance: a meta-analysis. Organization Studies, 24, 403–441.

    Article  Google Scholar 

  51. Pastor, J. T., Ruiz, J. L., & Sirvent, I. (1999). An enhanced DEA Russell graph efficiency measure. European Journal of Operational Research, 115, 596–607.

    Article  Google Scholar 

  52. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment Part 1: framework, goal and scope definition, inventory analysis, and applications. Environment International, 30, 701–720.

    Article  CAS  Google Scholar 

  53. Russell, R. R., & Schworm, W. (2018). Technological inefficiency indexes: a binary taxonomy and a generic theorem. Journal of Productivity Analysis, 49, 17–23.

    Article  Google Scholar 

  54. Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142, 16–20.

    Article  Google Scholar 

  55. Seiford, L. M., & Zhu, J. (2003). Context-dependent data envelopment analysis: measuring attractiveness and progress. Omega, 31, 397–480.

    Article  Google Scholar 

  56. Seiford, L. M., & Zhu, J. (2005). A response to comments on modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 161, 579–581.

    Article  Google Scholar 

  57. Shephard, R. W. (1953). Cost and production functions. Princeton: Princeton University Press.

    Google Scholar 

  58. Shephard, R. W. (1970). Theory of cost and production functions. Princeton: Princeton University Press.

    Google Scholar 

  59. Thompson, R. G., Langemeier, L., Lee, C.-T., Lee, E., & Thrall, R. M. (1990). The role of multiplier bounds in efficiency analysis, with an application to Kansas farming. Journal of Econometrics, 46, 93–108.

    Article  Google Scholar 

  60. Thompson, R. G., Dharmapala, P. S., & Thrall, R. M. (1995). Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines. International Journal of Production Economics, 39, 99–115.

    Article  Google Scholar 

  61. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130, 498–509.

    Article  Google Scholar 

  62. Tyteca, D. (1996). On the measurement of the environmental performance of firms – a literature review and a productive efficiency perspective. Journal of Environmental Management, 46, 281–308.

    Article  Google Scholar 

  63. Zhou, P., Ang, B. W., & Poh, K. L. (2006). Slacks-based efficiency measures for modeling environmental performance. Ecological Economics, 60, 111–118.

    Article  Google Scholar 

  64. Zhou, P., Poh, K. L., & Ang, B. W. (2007). A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178, 1–9.

    Article  Google Scholar 

  65. Zhou, P., Ang, B. W., & Wang, H. (2012). Energy and CO2 emission performance in electricity generation: a non-radial directional distance function approach. European Journal of Operational Research, 221, 625–635.

  66. Zhou, P., Delmas, M., & Kohli, A. (2017). Constructing meaningful environmental indices: a nonparametric frontier approach. Journal of Environmental Economics and Management, 85, 21–34.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Editor-in-chief, Advisory Editor, and the anonymous referee for their very insightful comments, which have significantly helped improve the quality of this study. This study was supported by the National Natural Science Foundation of China (71232007, 71702187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xiao Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proof of Theorem 1

Suppose that the original data (Xj, Yj, Uj) are replaced by \( \left({\hat{X}}_j,{\hat{Y}}_j,{\hat{U}}_j\right)=\left(\alpha {X}_j,\beta {Y}_j,\gamma {U}_j\right),\alpha, \beta, \gamma >0 \) for all of the observations. Without loss of generality, suppose that \( \left({\theta}_{mo}^{\ast },{\varphi}_{no}^{\ast },{\delta}_{lo}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) is an optimal solution to (4) when the oth entity (Xo, Yo, Uo) is being observed. Then, for any input m(∈{1, 2, …, M}), we have \( {\sum}_{j=1}^J{\lambda}_j^{\ast }{x}_{mj}\le {\theta}_{mo}^{\ast }{x}_{mo} \). It follows that \( \alpha {\sum}_{j=1}^J{\lambda}_j^{\ast }{x}_{mj}\le {\alpha \theta}_{mo}^{\ast }{x}_{mo} \) and \( {\sum}_{j=1}^J{\lambda}_j^{\ast}\left(\alpha {x}_{mj}\right)\le {\theta}_{mo}^{\ast}\left(\alpha {x}_{mj}\right) \), indicating that \( {\sum}_{j=1}^J{\lambda}_j^{\ast }{\hat{x}}_{mj}\le {\theta}_{mo}^{\ast }{\hat{x}}_{mo} \). Similarly, for any desirable output n(∈{1, 2, …, N}) and undesirable output l(∈{1, 2, …, L}), we have \( {\sum}_{j=1}^J{\lambda}_j^{\ast }{\hat{y}}_{nj}\le {\varphi}_{no}^{\ast }{\hat{y}}_{no} \) and \( {\sum}_{j=1}^J{\lambda}_j^{\ast }{\hat{u}}_{lj}\le \left(1-{\delta}_{lo}^{\ast}\right){\hat{u}}_{lo} \). Because α, β, and γ are arbitrary positive values, it can be concluded that \( \left({\theta}_{mo}^{\ast },{\varphi}_{no}^{\ast },{\delta}_{lo}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) is also an optimal solution to (4) when \( \left({\hat{X}}_o,{\hat{Y}}_o,{\hat{U}}_o\right) \) is being observed after the replacement. As a result, we have E(Xo, Yo, Uo) = E(αXo, βYo, γUo). □

Appendix 2. Proof of Theorem 2

As defined in (4), 0 ≤ θmo ≤ 1, φno ≥ 1, 0 ≤ δlo ≤ 1, ∀ m, n, l. With ρo as the objective of (4), it is easy to obtain that 0 ≤ E(Xo, Yo, Uo) ≤ 1. According to (12), we derive the benchmark target \( \left({\tilde{X}}_o,{\tilde{Y}}_o,{\tilde{U}}_o\right) \) for (Xo, Yo, Uo). Because no output can be produced if no input is consumed, we have \( {\tilde{X}}_o>0 \) for the benchmark target. Therefore, \( {\theta}_{mo}^{\ast }>0 \) for at least one input m(∈{1, 2, …, M}). As a result, we have 0 < E(Xo, Yo, Uo) ≤ 1. □

Appendix 3. Proof of Theorem 3

Suppose that (Xo, Yo, Uo) is dominated by (Xk, Yk, Uk) in Ω. Then, we have Xk ≤ Xo, Yk ≥ Yo, and Uk ≤ Uo with at least one strict inequality. Without loss of generality, suppose that Xk < Xo and \( \left({\theta}_{mk}^{\ast },{\varphi}_{nk}^{\ast },{\delta}_{lk}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) is an optimal solution to (4) when (Xk, Yk, Uk) is being observed. It follows that there must be at least one input m(∈{1, 2, …, M}) for which xmk < xmo. Accordingly, there exists a feasible solution \( \left({\theta}_{1k}^{\ast },\dots, {\theta}_{mo},\dots, {\theta}_{Mk}^{\ast },{\varphi}_{1k}^{\ast },\dots, {\varphi}_{Nk}^{\ast },{\delta}_{1k}^{\ast },\dots, {\delta}_{Lk}^{\ast },{\lambda}_1^{\ast },\dots, {\lambda}_J^{\ast}\right) \) to (4) when (Xo, Yo, Uo) is being observed, where \( {\theta}_{mo}{x}_{mo}={\theta}_{mk}^{\ast }{x}_{mk} \) and thus \( {\theta}_{mo}<{\theta}_{mk}^{\ast}\le 1 \), indicating that E(Xo, Yo, Uo) < 1. Similarly, if Yk > Yo and/or Uk < Uo, it can also be concluded that E(Xo, Yo, Uo) < 1. This completes the only if part.

Conversely, if E(Xo, Yo, Uo) < 1, then we have \( {\theta}_{mo}^{\ast}\le 1,{\varphi}_{no}^{\ast}\ge 1,{\delta}_{lo}^{\ast}\le 1,\forall m,n,l \) with at least one strict inequality, implying that its benchmark target \( \left({\tilde{X}}_o,{\tilde{Y}}_o,{\tilde{U}}_o\right) \) defined by (12) must dominate (Xo, Yo, Uo). Therefore, the if part is established. □

Appendix 4. Proof of Theorem 4

Suppose that \( \left({\theta}_{mo}^{\ast },{\varphi}_{no}^{\ast },{\delta}_{lo}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) and \( \left({\theta}_{mk}^{\ast },{\varphi}_{nk}^{\ast },{\delta}_{lk}^{\ast },{\lambda^{\prime}}_j^{\ast },\forall m,n,l,j\right) \) are the optimal solutions to (4) when the two entities (Xo, Yo, Uo) and (Xk, Yk, Uk) involved below are being observed, respectively. Let \( {\rho}_o^{\ast } \) and \( {\rho}_k^{\ast } \) be the optimal values of (4) when they are being observed, respectively.

First, consider two entities, (Xo, Yo, Uo) and (Xk, Yk, Uk), which differ from each other in only one input m(∈{1, 2, …, M}), i.e., xmk = xmo + a, (a > 0). We must show that E(Xo, Yo, Uo) > E(Xk, Yk, Uk). Let \( {\theta}_{mk}{x}_{mk}={\theta}_{mo}^{\ast }{x}_{mo} \); we have \( {\theta}_{mk}<{\theta}_{mo}^{\ast}\le 1 \) and \( \left({\theta}_{1o}^{\ast },\dots, {\theta}_{mk},\dots, {\theta}_{Mo}^{\ast },{\varphi}_{1o}^{\ast },\dots, {\varphi}_{No}^{\ast },{\delta}_{1o}^{\ast },\dots, {\delta}_{Lo}^{\ast },{\lambda}_1^{\ast },\dots, {\lambda}_J^{\ast}\right) \) is a feasible solution to (4) when (Xk, Yk, Uk) is being observed, with the corresponding value of the objective \( {\rho}_k\ge {\rho}_k^{\ast } \). Because \( {\theta}_{mk}<{\theta}_{mo}^{\ast } \), we also have \( {\rho}_k<{\rho}_o^{\ast } \). As a result, \( {\rho}_k^{\ast }<{\rho}_o^{\ast } \) and thus E(Xo, Yo, Uo) > E(Xk, Yk, Uk).

Next, consider two entities, (Xo, Yo, Uo) and (Xk, Yk, Uk), which differ from each other in only one desirable output n(∈{1, 2, …, N}), i.e., ynk = yno + a, (a > 0). We must show that E(Xo, Yo, Uo) < E(Xk, Yk, Uk). Let \( {\varphi}_{nk}^{\ast }{y}_{nk}={\varphi}_{no}{y}_{no} \); it follows that \( 1\le {\varphi}_{nk}^{\ast }<{\varphi}_{no} \) and \( \left({\theta}_{1k}^{\ast },\dots, {\theta}_{Mk}^{\ast },{\varphi}_{1k}^{\ast },\dots, {\varphi}_{no},\dots, {\varphi}_{Nk}^{\ast },{\delta}_{1k}^{\ast },\dots, {\delta}_{Lk}^{\ast },{\lambda^{\prime}}_1^{\ast },\dots, {\lambda^{\prime}}_J^{\ast}\right) \) are a feasible solution to (4) when (Xo, Yo, Uo) is being observed, with the corresponding value of the objective \( {\rho}_o\ge {\rho}_o^{\ast } \). Because \( {\varphi}_{nk}^{\ast }<{\varphi}_{no} \), we obtain \( {\rho}_o<{\rho}_k^{\ast } \). As a result, \( {\rho}_k^{\ast }>{\rho}_o^{\ast } \) and hence E(Xo, Yo, Uo) < E(Xk, Yk, Uk).

Finally, consider two entities, (Xo, Yo, Uo) and (Xk, Yk, Uk), which differ from each other in only one undesirable output l(∈{1, 2, …, L}), i.e., ulk = ulo + a, (a > 0). We must show that E(Xo, Yo, Uo) > E(Xk, Yk, Uk). Let \( \left(1-{\delta}_{lk}\right){u}_{lk}=\left(1-{\delta}_{lo}^{\ast}\right){u}_{lo} \); we have \( {\delta}_{lk}>{\delta}_{lo}^{\ast}\ge 0 \) and \( \left({\theta}_{1o}^{\ast },\dots, {\theta}_{Mo}^{\ast },{\varphi}_{1o}^{\ast },\dots, {\varphi}_{No}^{\ast },{\delta}_{1o}^{\ast },\dots, {\delta}_{lk},\dots, {\delta}_{Lo}^{\ast },{\lambda}_1^{\ast },\dots, {\lambda}_J^{\ast}\right) \) is a feasible solution to (4) when (Xk, Yk, Uk) is being observed, with the corresponding value of the objective \( {\rho}_k\ge {\rho}_k^{\ast } \). Because \( {\delta}_{lk}>{\delta}_{lo}^{\ast } \), it follows that \( {\rho}_k<{\rho}_o^{\ast } \). Therefore, we have \( {\rho}_k^{\ast }<{\rho}_o^{\ast } \) and E(Xo, Yo, Uo) > E(Xk, Yk, Uk). □

Appendix 5. Proof of Theorem 5

  1. (i)

    Suppose that \( \left({\theta}_{mo}^{\ast },{\varphi}_{no}^{\ast },{\delta}_{lo}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) and \( \left({\theta}_{mo}^{\alpha \ast },{\varphi}_{no}^{\alpha \ast },{\delta}_{lo}^{\alpha \ast },{\lambda}_j^{\alpha \ast },\forall m,n,l,j\right) \) are the optimal solutions to (4) when (Xo, Yo, Uo) and (αXo, Yo, Uo) are being observed, respectively. Let \( {\rho}_o^{\ast } \) and \( {\rho}_o^{\alpha \ast } \) be the optimal values of (4) when they are being observed, respectively. Because \( \alpha \ge \underset{m}{\max}\left\{{\theta}_{mo}^{\ast}\right\} \), we have \( {\theta}_{mo}^{\ast }/\alpha \le 1 \) for any m(∈{1, 2, …, M}). Then, it can be concluded that \( \left({\theta}_{mo}^{\ast }/\alpha, {\varphi}_{no}^{\ast },{\delta}_{lo}^{\ast },{\lambda}_j^{\ast },\forall m,n,l,j\right) \) is a feasible solution to (4) when (αXo, Yo, Uo) is being observed, with the corresponding value of the objective \( {\rho}_o^{\alpha}\ge {\rho}_o^{\alpha \ast } \). Because

$$ {\rho}_o^{\alpha }=\frac{\frac{1}{M}\sum \limits_{m=1}^M\frac{\theta_{mo}^{\ast }}{\alpha }}{\frac{1}{N}\sum \limits_{n=1}^N{\varphi}_{no}^{\ast }+\frac{1}{L}\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}=\frac{1}{\alpha}\cdot \frac{\frac{1}{M}\sum \limits_{m=1}^M{\theta}_{mo}^{\ast }}{\frac{1}{N}\sum \limits_{n=1}^N{\varphi}_{no}^{\ast }+\frac{1}{L}\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}=\frac{\rho_o^{\ast }}{\alpha }, $$

we have \( {\rho}_o^{\alpha \ast}\le {\rho}_o^{\ast }/\alpha \) and thus E(αXo, Yo, Uo) ≤ (1/α)E(Xo, Yo, Uo).

  1. (ii)

    Suppose that \( \left({\theta}_{mo}^{\beta \gamma \ast },{\varphi}_{no}^{\beta \gamma \ast },{\delta}_{lo}^{\beta \gamma \ast },{\lambda}_j^{\beta \gamma \ast },\forall m,n,l,j\right) \) is an optimal solution to (4) when (Xo, βYo, γUo) is being observed. Let \( {\rho}_o^{\beta \gamma \ast } \) be the optimal value of (4) when it is being observed. Because \( \beta \le \underset{n}{\min}\left\{{\varphi}_{no}^{\ast}\right\} \) and \( \gamma \ge 1-\underset{l}{\min}\left\{{\delta}_{lo}^{\ast}\right\} \), we have \( {\varphi}_{no}^{\ast }/\beta \ge 1 \) for any n(∈{1, 2, …, N}) and \( \left(1-{\delta}_{lo}^{\ast}\right)/\gamma \le 1 \) for any l(∈{1, 2, …, L}). As a result, \( \left({\theta}_{mo}^{\ast },{\varphi}_{no}^{\ast }/\beta, \left(1-\left(1-{\delta}_{lo}^{\ast}\right)/\gamma \right),{\lambda}_j^{\ast },\forall m,n,l,j\right) \) is a feasible solution to (4) when (Xo, βYo, γUo) is being observed, with the corresponding value of the objective \( {\rho}_o^{\beta \gamma}\ge {\rho}_o^{\beta \gamma \ast } \). In addition, from

$$ \left\{\begin{array}{l}\frac{L}{\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}-1\le \gamma \le 1, if\ \frac{\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}{L}\ge \frac{1}{2},\\ {}1\le \gamma \le \frac{L}{\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}-1, if\ \frac{\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}{L}\le \frac{1}{2},\end{array}\right. $$

it can be deduced that

$$ \frac{1}{L}\sum \limits_{l=1}^L\left(1-\frac{1-{\delta}_{lo}^{\ast }}{\gamma}\right)\ge \frac{1}{L}\sum \limits_{l=1}^L{\gamma \delta}_{lo}^{\ast }. $$

Thus, we have

$$ {\rho}_o^{\beta \gamma}=\frac{\frac{1}{M}\sum \limits_{m=1}^M{\theta}_{mo}^{\ast }}{\frac{1}{N}\sum \limits_{n=1}^N\frac{\varphi_{no}^{\ast }}{\beta }+\frac{1}{L}\sum \limits_{l=1}^L\left(1-\frac{1-{\delta}_{lo}^{\ast }}{\gamma}\right)}\le \frac{\frac{1}{M}\sum \limits_{m=1}^M{\theta}_{mo}^{\ast }}{\frac{1}{N}\sum \limits_{n=1}^N\frac{\varphi_{no}^{\ast }}{\beta }+\frac{1}{L}\sum \limits_{l=1}^L{\gamma \delta}_{lo}^{\ast }}\le \sigma \cdot \frac{\frac{1}{M}\sum \limits_{m=1}^M{\theta}_{mo}^{\ast }}{\frac{1}{N}\sum \limits_{n=1}^N{\varphi}_{no}^{\ast }+\frac{1}{L}\sum \limits_{l=1}^L{\delta}_{lo}^{\ast }}={\sigma \rho}_o^{\ast }, $$

where σ = max {β, 1/γ}.

It follows that \( {\rho}_o^{\beta \gamma \ast}\le {\sigma \rho}_o^{\ast } \) and hence E(Xo, βYo, γUo) ≤ σE(Xo, Yo, Uo).

Appendix 6. Proof of Corollary 1

By combining the proofs of (i) and (ii) in Theorem 5, Corollary 1 is immediately established. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JX., Chen, J. Measuring and Improving Eco-efficiency. Environ Model Assess 25, 373–395 (2020). https://doi.org/10.1007/s10666-019-09679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09679-5

Keywords

Navigation