Skip to main content
Log in

An enhanced square-grid structure for additive manufacturing and improved auxetic responses

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Auxetic structures exhibit negative Poisson’s ratios based on the deflection characteristics of the macrostructural forms generated by integrating specific base units. Considering the advantages of the abnormal metamaterial behavior, auxetic structures attained considerable research attention. While theoretical predictions indicate the possibilities to achieve very high auxetic responses, practical implementation and experimental validation were limited due to the difficulties in manufacturing the complex structural forms. Practical realization of true auxetic structural solutions attained a great impetus with the advent of the additive manufacturing solutions, opening up wider opportunities and renewed interests. The current research is an attempt towards enhancing the auxetic nature of a square grid structure by numerical and experimental methods. Finite element simulations allowed to identify structural changes for improved auxeticity and experimental validation based on selective laser melted structures proved the trends to be true. Experimental results based on the fabricated structure indicate the Poisson’s ratio to be − 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelaal, O.A., Darwish, S.M.: Analysis, fabrication and a biomedical application of auxetic cellular structures. Int. J. Eng. Innov. Technol. 2(3), 218–223 (2012)

    Google Scholar 

  • Alderson, K.L., Pickles, A.P., Neale, P.J., Evans, K.E.: Auxetic polyethylene: the effect of a negative Poisson’s ratio on hardness. Acta Metall. Mater. 42(7), 2261–2266 (1994)

    Article  Google Scholar 

  • Alderson, A., Rasburn, J., Ameer-Beg, S., Mullarkey, P.G., Perrie, W., Evans, K.E.: An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind. Eng. Chem. Res. 39(3), 654–665 (2000)

    Article  Google Scholar 

  • Attaran, M.: The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60(5), 677–688 (2017)

    Article  Google Scholar 

  • Bhullar, S.K., Ahmed, F., Ko, J., Jun, M.: Design and fabrication of stent with negative Poisson’s ratio. Int. J. Mech. Ind. Sci. Eng. 8(2), 213–214 (2014)

    Google Scholar 

  • Bourell, D., Kruth, J.P., Leu, M., Levy, G., Rosen, D., Beese, A.M., Clare, A.: Materials for additive manufacturing. CIRP Ann. 66(2), 659–681 (2017)

    Article  Google Scholar 

  • Chan, N., Evans, K.E.: Fabrication methods for auxetic foams. J. Mater. Sci. 32(22), 5945–5953 (1997)

    Article  Google Scholar 

  • Elipe, J.C.Á., Lantada, A.D.: Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater. Struct. 21(10), 105004 (2012)

    Article  Google Scholar 

  • Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000a)

    Article  Google Scholar 

  • Evans, K.E., Alderson, K.L.: Auxetic materials: the positive side of being negative. Eng. Sci. Educ. J. 9(4), 148–154 (2000b)

    Article  Google Scholar 

  • Fu, M., Chen, Y., Zhang, W., Zheng, B.: Experimental and numerical analysis of a novel three-dimensional auxetic metamaterial. Phys. Status Solidi (b) 253(8), 1565–1575 (2016)

    Article  Google Scholar 

  • Gaspar, N., Ren, X.J., Smith, C.W., Grima, J.N., Evans, K.E.: Novel honeycombs with auxetic behaviour. Acta Mater. 53(8), 2439–2445 (2005)

    Article  Google Scholar 

  • Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies, vol. 238. Springer, New York (2010)

    Book  Google Scholar 

  • Grima, J.N., Caruana-Gauci, R.: Mechanical metamaterials: materials that push back. Nat. Mater. 11(7), 565–566 (2012)

    Article  Google Scholar 

  • Grima, J.N., Attard, D., Gatt, R., Cassar, R.N.: A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Adv. Eng. Mater. 11(7), 533–535 (2009)

    Article  Google Scholar 

  • Koudelka, P., Jirousek, O., Fila, T., Doktor, T.: Compressive properties of auxetic structures produced with direct 3D printing. Mater. Tehnol. 50(3), 311–317 (2016)

    Article  Google Scholar 

  • Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1041 (1987)

    Article  Google Scholar 

  • Lakes, R.S., Elms, K.: Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27(12), 1193–1202 (1993)

    Article  Google Scholar 

  • Li, Y., Zeng, C.: Room-temperature, near-instantaneous fabrication of auxetic materials with constant Poisson’s ratio over large deformation. Adv. Mater. 28(14), 2822–2826 (2016)

    Article  Google Scholar 

  • Li, S., Hassanin, H., Attallah, M.M., Adkins, N.J., Essa, K.: The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 105, 75–83 (2016)

    Article  Google Scholar 

  • Ravirala, N., Alderson, A., Alderson, K.L., Davies, P.J.: Expanding the range of auxetic polymeric products using a novel melt-spinning route. Phys. Status Solidi (b) 242(3), 653–664 (2005)

    Article  Google Scholar 

  • Rehme, O., Emmelmann, C.: Selective laser melting of honeycombs with negative Poisson’s ratio. J. Laser Micro/Nanoeng. 4, 128–134 (2009)

    Article  Google Scholar 

  • Ren, X., Shen, J., Ghaedizadeh, A., Tian, H., Xie, Y.M.: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater. Struct. 24(9), 095016 (2015)

    Article  Google Scholar 

  • Renishaw. Data sheet: CoCr-0404 powder for additive manufacturing. http://www.renishaw.com/en/data-sheets-additive-manufacturing–17862 (2016). Accessed July 2018

  • Renishaw. Data sheet: SS 316L-0407 powder for additive manufacturing. http://www.renishaw.com/en/data-sheets-additive-manufacturing–17862 (2018)

  • Scarpa, F., Ciffo, L.G., Yates, J.R.: Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 13(1), 49 (2003)

    Article  Google Scholar 

  • Schwerdtfeger, J., Heinl, P., Singer, R.F., Körner, C.: Auxetic cellular structures through selective electron-beam melting. Phys. Status Solidi (b) 247(2), 269–272 (2010)

    Article  Google Scholar 

  • Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R.F., Körner, C.: Mechanical characterisation of a periodic auxetic structure produced by SEBM. physica status solidi (b) 249(7), 1347–1352 (2012)

    Article  Google Scholar 

  • Smith, C.W., Grima, J.N., Evans, K.: A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48(17), 4349–4356 (2000)

    Article  Google Scholar 

  • Wang, K., Chang, Y.H., Chen, Y., Zhang, C., Wang, B.: Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 67, 159–164 (2015)

    Article  Google Scholar 

  • Warmuth, F., Osmanlic, F., Adler, L., Lodes, M.A., Körner, C.: Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting. Smart Mater. Struct. 26(2), 025013 (2016)

    Article  Google Scholar 

  • White, L.: Auxetic foam set for use in smart filters and wound dressings. Urethanes Technol. Int. 26(4), 34–36 (2009)

    Google Scholar 

  • Yang, L., Harrysson, O., West, H., Cormier, D.: Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater. 60(8), 3370–3379 (2012)

    Article  Google Scholar 

  • Yang, C., Vora, H.D., Chang, Y.B.: Evaluation of auxetic polymeric structures for use in protective pads. In: ASME 2016 International Mechanical Engineering Congress and Exposition, pp. V009T12A066-V009T12A066. American Society of Mechanical Engineers (2016)

  • Yuan, S., Shen, F., Bai, J., Chua, C.K., Wei, J., Zhou, K.: 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Mater. Des. 120, 317–327 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Singamneni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, K., Calius, E.P. & Singamneni, S. An enhanced square-grid structure for additive manufacturing and improved auxetic responses. Int J Mech Mater Des 15, 413–426 (2019). https://doi.org/10.1007/s10999-018-9423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9423-8

Keywords

Navigation