Skip to main content

Advertisement

Log in

Evolution of the Carnassial in Living Mammalian Carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): Diet, Phylogeny, and Allometry

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Different living mammals have developed a carnivorous habit (e.g., Carnivora, Dasyuridae, Thylacinidae, some Didelphidae). They exhibit different specializations for carnivory; however, they share some characters such as a carnassial molar. Previous studies have correlated the shape of molars with diet using morphometric indices or surface scans. In this work, we used 3D geometric morphometrics to explore the shape of the lower carnassials of 235 specimens corresponding to 71 extant species of Carnivora and six extant species of Marsupialia, both Didelphimorphia and Dasyuromorphia. We statistically estimated the effect of size, diet, and phylogeny on molar shape. All the analyses indicated a higher correlation between diet and molar shape, and a better correlation between molar shape and the position of each species on the phylogeny. Therefore, if we take into account the phylogenetic pattern, we can use molar morphology to infer diet of fossil species. Finally, this work evaluates for the first time, in a quantitative way, which of the lower molars of the Metatheria (m3 or m4) is the best analogue to the m1 of Carnivora; our results indicated the m4 is the best analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DC (2014a) A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68:2675–2688. https://doi.org/10.1111/evo.12463

    Article  PubMed  Google Scholar 

  • Adams DC (2014b) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63:685–697. https://doi.org/10.1093/sysbio/syu030

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer ML (2016) On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70:2623–2631. https://doi.org/10.1111/evo.13045

    Article  PubMed  Google Scholar 

  • Adams DC, Collyer ML, Kaliontzopoulou A, Sherratt E (2017) Geomorph: software for geometric morphometric analyses. R package version 3.0.5. https://cran.r-project.org/package=geomorph

  • Adler D, Murdoch D, Nenadic O, Urbanek S, Chen M, Gebhardt A, Bolker B, Csardi G, Strzelecki A, Senger A, Eddelbuettel D (2017) rgl: 3D Visualization Using OpenGL. R package version 0.98.22. https://CRAN.R-project.org/package=rgl

  • Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Aust Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Asahara M, Saito K, Kishida T, Takahashi K, Bessho K (2016) Unique pattern of dietary adaptation in the dentition of Carnivora: its advantage and developmental origin. Proc R Soc B 283:20160375 . https://doi.org/10.1098/rspb.2016.0375

    Article  CAS  PubMed Central  Google Scholar 

  • Astúa D (2015) Family Didelphidae (opossums). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 70–186

    Google Scholar 

  • Austin JJ, Soubrier J, Prevosti FJ, Prates L, Trejo V, Mena F, Cooper A (2013) The origins of the enigmatic Falkland Islands wolf. Nat Commun 4:1552 . https://doi.org/10.1038/ncomms2570

    Article  CAS  PubMed  Google Scholar 

  • Baker AM (2015) Family Dasyuridae (carnivorous marsupials). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 232–348

    Google Scholar 

  • Bapst DW (2012) paleotree : an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol Evol 3:803–807. https://doi.org/10.1111/j.2041-210X.2012.00223.x

    Article  Google Scholar 

  • Biknevicius AR, Van Valkenburgh B (1996) Design for killing: craniodental adaptations of predators. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Vol. 2. Cornell Univerty Press, New York, pp 393–428

    Google Scholar 

  • Blackhall S (1980) Diet of the eastern native-cat, Dasyurus viverrinus (Shaw), in southern Tasmania. Wildl Res 7:191–197. https://doi.org/10.1071/WR9800191

    Google Scholar 

  • Blomberg SP, Garland TJ (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910 . https://doi.org/10.1046/j.1420-9101.2002.00472.x

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Article  PubMed  Google Scholar 

  • Butler PM (1946) The evolution of carnassial dentitions in the Mammalia. Proc Zool Soc Lond 116:198–220. https://doi.org/10.1111/j.1096-3642.1946.tb00117.x

    Google Scholar 

  • Calandra I, Merceron G (2016) Dental microwear texture analysis in mammalian ecology. Mammal Rev 46:215–228. https://doi.org/10.1111/mam.12063

    Article  Google Scholar 

  • Ceotto P, Finotti R, Santori R, Cerqueira R (2009) Diet variation of the marsupials Didelphis aurita and Philander frenatus (Didelphimorphia, Didelphidae) in a rural area of Rio de Janeiro state, Brazil. Mastozool Neotrop 16:49–58

    Google Scholar 

  • Chemisquy MA, Prevosti FJ, Martin G, Flores DA (2015) Evolution of molar shape in didelphid marsupials (Marsupialia: Didelphidae): analysis of the influence of ecological factors and phylogenetic legacy. Zool J Linn Soc 173:217–235. https://doi.org/10.1111/zoj.12205

    Article  Google Scholar 

  • Christensen HB (2014) Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS One 9:e102789. https://doi.org/10.1371/journal.pone.0102789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper CE (2005) Myrmecobius fasciatus (Dasyuromorphia: Myrmecobiidae). Mammal Species 43:129–140. https://doi.org/10.1644/881.1

    Google Scholar 

  • Crusafont-Pairó M, Truyols-Santonja J (1953) Un ensayo goniométrico sobre la carnicera inferior de los Fisípedos. Estud Geológicos 18:225–256

    Google Scholar 

  • Crusafont-Pairó M, Truyols-Santonja J (1956) A biometric study of the evolution of fissiped carnivores. Evolution 10:314–332

    Google Scholar 

  • Davis M, Pineda Munoz S (2016) The temporal scale of diet and dietary proxies. Ecol Evol 6:1883–1897. https://doi.org/10.1002/ece3.2054

    Article  PubMed  PubMed Central  Google Scholar 

  • de Muizon C, Lange-Badré B (1997) Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30:353–366. https://doi.org/10.1111/j.1502-3931.1997.tb00481.x

    Google Scholar 

  • Dragoo JW (2009) Family Mephitidae (skunks). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 532–563

    Google Scholar 

  • Echarri S, Ercoli MD, Chemisquy MA, Turazzini G, Prevosti FJ (2017) Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth Environ Sci Trans R Soc Edinburgh 106:277–288. https://doi.org/10.1017/S1755691016000190

    Article  Google Scholar 

  • Eizirik E (2012) A molecular view on the evolutionary history and biogeography of neotropical carnivores (Mammalia, Carnivora). In: Patterson BD, Costa LP (eds) Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp 123–142

    Google Scholar 

  • Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O'Brien SJ (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63 . https://doi.org/10.1016/j.ympev.2010.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans AR (2013) Shape descriptors as ecometrics in dental ecology. Hystrix 24:133–140. https://doi.org/10.4404/hystrix-24.1-6363

    Article  Google Scholar 

  • Evans AR, Sanson GD (2006) Spatial and functional modeling of carnivore and insectivore molariform teeth. J Morphol 267:649–662. https://doi.org/10.1002/jmor.10285

    Article  PubMed  Google Scholar 

  • Evans AR, Fortelius M, Jernvall J, Eronen JT (2005) Dental ecomorphology of extant European carnivorans. In: Żądzińska E (ed) Current Trends in Dental Morphology Research: 13th International Symposium on Dental Morphology. University of Lódz Press, Lódz, pp 223–232

    Google Scholar 

  • Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81. https://doi.org/10.1038/nature05433

    Article  CAS  PubMed  Google Scholar 

  • Ewer RF (1973) The Carnivores. Cornell Univerty Press, New York

    Google Scholar 

  • Figueirido B, Tseng ZJ, Martín-Serra A (2013) Skull shape evolution in durophagous carnivorans. Evolution 67:1975–1993. https://doi.org/10.1111/evo.12059

    Article  PubMed  Google Scholar 

  • Flores DA (2009) Phylogenetic analyses of postcranial skeletal morphology in didelphid marsupials. Bull Am Mus Nat Hist 320:1–81

    Google Scholar 

  • Flynn JJ, Wesley-Hunt GD (2005) Carnivora. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. The Johns Hopkins University Press, Baltimore and London, pp 175–198

    Google Scholar 

  • Forasiepi AM, Sánchez-Villagra MR (2014) Heterochrony, dental ontogenetic diversity, and the circumvention of constraints in marsupial mammals and extinct relatives. Paleobiology 40:222–237. https://doi.org/10.1666/13034

    Article  Google Scholar 

  • Friend JA (2015) Family Myrmecobiidae (numbat). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 222–231

    Google Scholar 

  • Garshelis DL (2009) Family Ursidae (bears). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 448–497

    Google Scholar 

  • Giannini NP (2003) Canonical phylogenetic ordination. Syst Biol 52:684–695. https://doi.org/10.1080/10635150390238888

    Article  PubMed  Google Scholar 

  • Gilchrist JS, Jennings AP, Veron G, Cavallini P (2009) Family Herpestidae (Mongooses). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 262–329

    Google Scholar 

  • Godínez Domínguez E, Freire J (2003) Information theoretic approach for selection of spatial and temporal models of community organization. Mar Ecol Prog Ser 253:17–24

    Google Scholar 

  • Goillot C, Blondel C, Peigné S (2009) Relationships between dental microwear and diet in Carnivora (Mammalia) - Implications for the reconstruction of the diet of extinct taxa. Palaeogeogr Palaeoclimatol Palaeoecol 271:13–23. https://doi.org/10.1016/j.palaeo.2008.09.004

    Article  Google Scholar 

  • Goin FJ, Velázquez C, Scaglia O (1992) Orientación de las crestas cortantes en el molar tribosfénico. Sus implicancias funcionales en didelfoideos (Marsupialia) fósiles y vivientes. Rev del Mus La Plata (Nueva Ser 9:183–198)

  • Goin FJ, Woodburne MO, Zimicz AN, Martin GM, Chornogubsky L (2016) A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals. Springer, Cham

    Google Scholar 

  • Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B 53:285–339

    Google Scholar 

  • Goodman SM (2009) Family Eupleridae (Madagascar carnivores). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 330–351

    Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B Biol Sci 326:119–157. https://doi.org/10.1098/rstb.1989.0106

  • Graw B, Manser M (2016) Life history patterns and biology of the slender mongoose (Galerella sanguinea) in the Kalahari Desert. J Mammal 98(2):332–338. https://doi.org/10.1093/jmammal/gyw178

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425. https://doi.org/10.1086/282146

    Article  Google Scholar 

  • Helgen KM, Veatch EG (2015) Recent extinct Australian marsupials and monotremes. In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 5. Monotremes and Marsupials. Lynx Edicions, Barcelona, pp 17–31

    Google Scholar 

  • Hogue AS, Ziashakeri S (2010) Molar crests and body mass as dietary indicators in marsupials. Aust J Zool 58:56–68. https://doi.org/10.1071/ZO09084

    Article  Google Scholar 

  • Holekamp KE, Kolowski JM (2009) Family Hyaenidae (hyenas). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 234–261

    Google Scholar 

  • Holliday JA (2010) Evolution in Carnivora: identifying a morphological bias. In: Goswami A, Friscia A (eds) Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Cambridge University Press, New York, pp 189–224

    Google Scholar 

  • Jones ME (1995) Guild structure of the large marsupial carnivores in Tasmania. Ph.D. dissertation, University of Tasmania, Hobart.

    Google Scholar 

  • Jones ME (2003) Covergence in ecomorphology and guild structure among marsupial and placental carnivores. In: Jones ME, Dickman CR, Archer M (eds) Predators with Pouches. CSIRO Publishing, Collingwood, pp 285–296

    Google Scholar 

  • Jones ME, Barmuta LA (2000) Niche differentiation among sympatric Australian dasyurid carnivores. J Mammal 81:434–447. https://doi.org/10.1644/1545-1542(2000)081<0434

    Article  Google Scholar 

  • Kay RF (1975) The functional adaptions of primate molar teeth. Am J Phys Anthropol 43:195–216

    CAS  PubMed  Google Scholar 

  • Kay RF, Hylander WL (1978) The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In: Montgomery GG (ed) The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, D.C., pp 173–191

  • Kay RF, Sussman RW, Tattersall I (1978) Dietary and dental variations in the genus Lemur, with comments concerning dietary-dental correlations among Malagasy primates. Am J Phys Anthropol 49:119–127. https://doi.org/10.1002/ajpa.1330490118

    CAS  PubMed  Google Scholar 

  • Kays R (2009) Family Procyonidae (raccoons). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 504–531

  • Kemsley EK (1996) Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods. Chemom Intell Lab Syst 33:47–61. https://doi.org/10.1016/0169-7439(95)00090-9

    CAS  Google Scholar 

  • Klingenberg CP (2008) Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol 35:186–190. https://doi.org/10.1007/s11692-008-9029-4

    Article  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  PubMed  Google Scholar 

  • Klingenberg CP, Monteiro LR (2005) Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Syst Biol 54:678–688. https://doi.org/10.1080/10635150590947258

    Article  PubMed  Google Scholar 

  • Koepfli K-P, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10. https://doi.org/10.1186/1741-7007-6-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant function analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018. https://doi.org/10.1016/j.jas.2011.06.028

    Google Scholar 

  • Krawczyk AJ, Bogdziewicz M, Majkowska K, Glazaczow A (2016) Diet composition of the Eurasian otter Lutra lutra in different freshwater habitats of temperate Europe: a review and meta-analysis. Mammal Rev 46:106–113. https://doi.org/10.1111/mam.12054

    Article  Google Scholar 

  • Kruuk H (2006) Otters: Ecology, Behaviour and Conservation. Oxford University Press, New York

    Google Scholar 

  • Kutschera VE, Bidon T, Hailer F, Rodi JL, Fain SR, Janke A (2014) Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Mol Biol Evol 31:2004–2017. https://doi.org/10.1093/molbev/msu186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langer P, Chivers DJ (1994) Classification of foods for comparative analysis of gastro-intestinal tract. In: Chivers DJ, Langer P (eds) The Digestive System in Mammals: Food Form and Function. Cambridge University Press, Cambridge, pp 74–86

    Google Scholar 

  • Lanszki J, Kurys A, Heltai M, Csányi S, Ács K (2015) Diet composition of the golden jackal in an area of intensive big game management. Ann Zool Fennici 52:243–255. https://doi.org/10.5735/086.052.0403

    Article  Google Scholar 

  • Larivière S, Jennings AP (2009) Family Mustelidae (weasels and relatives). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 564–656

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, 2nd edition. Elsevier, Amsterdan

  • Li G, Davis BW, Eizirik E, Murphy WJ (2016) Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:1–11. https://doi.org/10.1101/gr.186668.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727. https://doi.org/10.1086/660020

    Article  PubMed  Google Scholar 

  • Macedo J, Loretto D, Vieira MV, Cerqueira R (2006) Classes de desenvolvimento em marsupiais: um método para animais vivos. Mastozool Neotrop 13:133–136

    Google Scholar 

  • Magnus LZ, Cáceres N (2017) Phylogeny explains better than ecology or body size the variation of the first lower molar in didelphid marsupials. Mammalia 81: 119–133. https://doi.org/10.1515/mammalia-2015-0070

    Article  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Google Scholar 

  • Martins EP, Diniz-Filho JAF, Housworth EA (2002) Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56:1–13. https://doi.org/10.1111/j.0014-3820.2002.tb00844.x

    PubMed  Google Scholar 

  • Meloro C, Raia P (2010) Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evol Biol 37:177–186. https://doi.org/10.1007/s11692-010-9094-3

    Article  Google Scholar 

  • Meloro C, Clauss M, Raia P (2015) Ecomorphology of Carnivora challenges convergent evolution. Org Divers Evol 15:711–720. https://doi.org/10.1007/s13127-015-0227-5

    Google Scholar 

  • Meloro C, Raia P, Piras P, Barbera C, O'Higgins P (2008) The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zool J Linn Soc 154:832–845. https://doi.org/10.1111/j.1096-3642.2008.00429.x

    Article  Google Scholar 

  • Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114. https://doi.org/10.1007/s11692-011-9109-8

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247. https://doi.org/10.1007/s11692-009-9055-x

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) vegan: Comunity Ecology Package. R package version 2.3–5. http://CRAN.R-project.org/package=vegan

  • Oxnard C, O’Higgins P (2009) Biology clearly needs morphometrics. Does morphometrics need biology? Biol Theory 4:84–97. https://doi.org/10.1162/biot.2009.4.1.84

    Article  Google Scholar 

  • Padial JM, Avila E, Sanchez JM (2002) Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammal Biol 67:137–146

    Google Scholar 

  • Perez IS, Bernal V, Gonzalez PN (2006) Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat 208:769–784

    PubMed  Google Scholar 

  • Petter G (1969) Interpretation évolutive des caractères de la denture des viverridés africains. Mammalia 33:607–625

    Google Scholar 

  • Pineda-Munoz S, Alroy J (2014) Dietary characterization of terrestrial mammals. Proc R Soc Lond B 281:20141173

    Google Scholar 

  • Pineda-Munoz S, Lazagabaster IA, Alroy J, Evans AR (2017) Inferring diet from dental morphology in terrestrial mammals. Methods Ecol Evol 8:481–491. https://doi.org/10.1111/2041-210X.12691

    Article  Google Scholar 

  • Popowics TE (2003) Postcanine dental form in the Mustelidae and Viverridae (Carnivora: Mammalia). J Morphol 256:322–341. https://doi.org/10.1002/jmor.10091

    Article  PubMed  Google Scholar 

  • Prevosti FJ, Turazzini GF, Ercoli MD, Hingst-Zaher E (2012a) Mandible shape in marsupial and placental carnivorous mammals: a morphological comparative study using geometric morphometrics. Zool J Linn Soc 164:836–855. https://doi.org/10.1111/j.1096-3642.2011.00785.x

    Article  Google Scholar 

  • Prevosti FJ, Forasiepi AM, Ercoli MD, Turazzini GF (2012b) Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late early Miocene). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation. Cambridge University Press, Cambridge, pp 173–193

    Google Scholar 

  • Prevosti FJ, Forasiepi A, Zimicz N (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20:3–21. https://doi.org/10.1007/s10914-011-9175-9

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503. https://doi.org/10.1111/j.1558-5646.2009.00921.x

    Article  PubMed  Google Scholar 

  • Reddy D, Kim J, Raaum R (2006) Resample.exe. http://life.bio.sunysb.edu/morph/soft-utility.html

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223. https://doi.org/10.1007/s003579900054

    Article  Google Scholar 

  • Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev 39:67–78. https://doi.org/10.1111/j.1365-2907.2008.00134.x

    Article  Google Scholar 

  • Sacco T, Van Valkenburgh B (2004) Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zool 263:41–54. https://doi.org/10.1017/S0952836904004856

    Article  Google Scholar 

  • Sato JJ, Wolsan M, Prevosti FJ, D'Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757. https://doi.org/10.1016/j.ympev.2012.02.025

    Article  PubMed  Google Scholar 

  • Savage RJG (1977) Evolution in carnivorous mammals. Palaeontology 20:237–271

    Google Scholar 

  • Seetah TK, Cardini A, Miracle PT (2012) Can morphospace shed light on cave bear spatial-temporal variation? Population dynamics of Ursus spelaeus from Romualdova pećina and Vindija, (Croatia). J Archaeol Sci 39:500–510. https://doi.org/10.1016/j.jas.2011.10.005

    Article  Google Scholar 

  • Shanahan T (2011) Phylogenetic inertia and Darwin’s higher law. Stud Hist Philos Biol Biomed Sci 42:60–68. https://doi.org/10.1016/j.shpsc.2010.11.013

    Google Scholar 

  • Sheets HD, Covino KM, Panasiewicz JM, Morris SR (2006) Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front Zool 3:15. https://doi.org/10.1186/1742-9994-3-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sillero-Zubiri C (2009) Family Canidae (dogs). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 352–447

    Google Scholar 

  • Smits PD, Evans AR (2012) Functional constraints on tooth morphology in carnivorous mammals. BMC Evol Biol 12:146. https://doi.org/10.1186/1471-2148-12-146

    Article  PubMed  PubMed Central  Google Scholar 

  • Solé F, Ladevèze S (2017) Evolution of the hypercarnivorous dentition in mammals (Metatheria, Eutheria) and its bearing on the development of tribosphenic molars. Evol Dev 19:56–68. https://doi.org/10.1111/ede.12219

    Article  PubMed  Google Scholar 

  • Steinmetz R, Garshelis DL, Chutipong W, Seuaturien N (2013) Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. J Mammal 94:1–18. https://doi.org/10.1371/journal.pone.0014509

    Article  CAS  Google Scholar 

  • Strait SG (1993) Differences in occlusal morphology and molar size in frugivores and faunivores. J Hum Evol 25:471–484

    Google Scholar 

  • Strauss RE (2010) Discriminating groups of organisms. In: Elewa AMT (ed) Morphometric for Nonmorphometricians. Springer, Heidelberg, pp 73–91

    Google Scholar 

  • Sunquist ME, Sunquist FC (2009) Family Felidae (cats). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 54–169

    Google Scholar 

  • Taylor RJ (1986) Notes on the diet of the carnivorous mammals of the Upper Henty River region, western Tasmania. Pap Proc R Soc Tasmania 120:7–10

    Google Scholar 

  • Thompson EN, Biknevicius AR, German RZ (2003) Ontogeny of feeding function in the gray short-tailed opossum Monodelphis domestica: empirical support for the constrained model of jaw biomechanics. J Exp Biol 206:923–932. https://doi.org/10.1242/jeb.00181

    Article  PubMed  Google Scholar 

  • Torre I, Ballesteros T, Degollada A (2003) Changes in the diet of the genet (Genetta genetta Linnaeus, 1758) in relation to small mammal-prey availability: possible choice of the bank vole? Galemys 15:25–36

  • Ungar PS (2010) Mammal Teeth: Origin, Evolution, and Diversity. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • van Nievelt AFH, Smith KK (2005) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31:324–346. https://doi.org/10.1666/0094-8373(2005)031[0324:TRONTR]2.0.CO;2

    Google Scholar 

  • Van Valkenburgh B (1989) Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: Gittleman JL (ed) Carnivore Behavior, Ecology, and Evolution. Vol. 1. Springer US, New York, pp 410–436

    Google Scholar 

  • Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47:147–163. https://doi.org/10.1093/icb/icm016

    Article  PubMed  Google Scholar 

  • Van Valkenburgh B, Koepfli K-P (1993) Cranial and dental adaptations to predation in canids. Symp Zool Soc Lond 65:15–37

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edition. Springer, New York

    Google Scholar 

  • Vieira EM, Astúa de Moraes D (2003) Carnivory and insectivory in Neotropical marsupials. In: Jones ME, Dickman CR, Archer M (eds) Predators with Pouches. CSIRO Publishing, Collingwood, pp 271–284

    Google Scholar 

  • Werdelin L (1986) Comparison of skull shape in marsupial and placental carnivores. Aust J Zool 34:109–117 . https://doi.org/10.1071/ZO9860109

    Article  Google Scholar 

  • Werdelin L (1987) Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13:342–350

    Google Scholar 

  • Westerman M, Krajewski C, Kear BP, Meehan L, Meredith RW, Emerling CA, Springer MS (2016) Phylogenetic relationships of dasyuromorphian marsupials revisited. Zool J Linn Soc 176:686–701. https://doi.org/10.1111/zoj.12323

    Article  Google Scholar 

  • Wilson DE (2009) Class Mammalia (mammals). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona, pp 17–47

    Google Scholar 

Download references

Acknowledgements

We thank D. Flores and P. Teta (MACN-ma) and I. Olivares (MLP-ma) for access to specimens under their care; J. Rajmil, C. Bustamante, W. Bustamante, and M. Mignana for replicas of molars deposited in foreign collections; S. Ladevèze, V. Krapovickas, A. Forasiepi, G. Cassini, C. Marsicano, and two anonymous reviewers for providing useful comments that helped improve the manuscript; E. Daneri Grosso and M. Macchioli for helping with the English version of the manuscript. This is a contribution to projects PICT-2015-0966 (F.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio D. Tarquini.

Electronic supplementary material

ESM 1

(DOC 611 kb)

ESM 2

(DOC 339 kb)

ESM 3

(DOC 3074 kb)

ESM 4

(DOC 304 kb)

ESM 5

(PDF 434 kb)

ESM 6

(HTML 313 kb)

ESM 7

(PDF 276 kb)

ESM 8

(PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarquini, S.D., Chemisquy, M.A. & Prevosti, F.J. Evolution of the Carnassial in Living Mammalian Carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): Diet, Phylogeny, and Allometry. J Mammal Evol 27, 95–109 (2020). https://doi.org/10.1007/s10914-018-9448-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-018-9448-7

Keywords

Navigation