Skip to main content
Log in

The Neurobiological Effects of the Combined Impact of Anti-Orthostatic Hanging and Different Ionizing Irradiations

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—The purpose of this investigation was to study the neurobiological effects of several interplanetary flight factors: hypogravity, which was modeled in a ground-based experiment using the conventional gravitational unloading technique, a 7-day anti-orthostatic hanging (AOH), and synchronous with it long-term gamma irradiation and high-energy protons. We analyzed the animal behavior in a number of tests: the open field, elevated plus maze, passive avoidance, Morris water test, and the exchange of monoamines in key brain structures. The most interesting and paradoxical result of our study is that in some cases effects were mitigated by the combined effect of radiation and microgravity, which manifests itself both in behavior and in neurochemical changes in all five studied brain structures, despite the fact that these structures play different roles in the performance of behavior. However, the isolated treatment with both radiation and AOH caused significant changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Adv. Space Res., 2003, vol. 31, no. 1, pp. 127–33.

    Article  CAS  PubMed  Google Scholar 

  2. Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Radiat. Res., 2005, vol. 164, no. 4.

  3. Machida, M., Lonart, G., and Britten, R.A., Radiat. Res., 2010, vol. 174, no. 5, pp. P. 618–623.

  4. Britten, R.A., Davis, L.K., Johnson, A.M., Keeney, S., Siegel, A., Sanford, L.D., Singletary, S.J., and Lonart, G., Radiat. Res., 2012, vol. 77, no. 2, pp. 146–151.

    Article  CAS  Google Scholar 

  5. Rabin, B.M., Hunt, W.A., Joseph, J.A., Dalton, T.K., and Kandasamy, S.B., Radiat. Res., 1991, vol. 128, no. 2, pp. 216–221.

    Article  CAS  PubMed  Google Scholar 

  6. Pecaut, M.J., Haerich, P., Zuccarelli, C.N., Smith, A.L., Zendejas, E.D., and Nelson, G.A., Cogn. Affect Behav. Neurosci., 2002, vol. 2, no. 4, pp. 329–340.

    Article  PubMed  Google Scholar 

  7. Shtemberg, A.S., Kokhan, V.S., Kudrin, V.S., Matveeva, M.I., Lebedeva-Georgievskaya, K.B., Timoshenko, G.N., Molokanov, A.G., Krasavin, E.A., Narke-vich, V.B., Klodt, P.M., and Bazyan, A.S., Neurochemical J., 2015, vol, 9, no 1, pp. 66–72.

    Article  CAS  Google Scholar 

  8. Shtemberg, A.S., Lebedeva-Georgievskaya, K.B., Matveeva, M.I., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., and Bazyan, A.S., Izvestiya RAN. Seriya Biologicheskaya, 2014, no. 2, pp. 168–175.

  9. Kokhan, V.S., Matveeva, M.I., Bazyan, A.S., Kudrin, V.S., Mukhametov, A., and Shtemberg, A.S., Behav. Brain Res., 2017, vol. 320, pp. 473–483.

    Article  CAS  PubMed  Google Scholar 

  10. Mao, X.W., Nishiyama, N.C., Pecaut, M.J., Campbell-Beachler, M., Gifford, P., Haynes, K.E., Becronis, C., and Gridley, D.S., Radiation Res., vol. 185, no. 6, pp. 647–657.

  11. Pani, G., Verslegers, M., Quintens, R., Samari, N., de Saint-Georges, L., van Ostveldt, P., Baatout, S., and Benotmane, M.A., PLoS One, 2016, vol. 11, no. 5, e0155260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bazyan, A.S., 18th Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Neiroinformatika–16”: Lektsii po neiroinformatike, Moscow: NIYaU MIFI, 2016, pp. 147–170.

  13. Bazyan, A.S. Uspekhi Fiziol. Nauk, 2016, vol. 47, no. 1, pp. 17–29.

    CAS  Google Scholar 

  14. Bazyan, A.S. Uspekhi Fiziol. Nauk, 2016, vol. 47, no. 3, pp. 15–33.

    CAS  Google Scholar 

  15. Bazyan, A.S. and Rogal’, A.V. Uspekhi Fiziol. Nauk, 2015, vol. 46, no. 1, pp. 3–21.

    CAS  Google Scholar 

  16. Shtemberg, A.S., Bazyan, A.S., Lebedeva-Georgievskaya, K.B., Matveeva, M.I., Kudrin, V.S., and Kokhan, V.S. Aviakosm. Ekol. Meditsina, 2013, vol. 47, no. 6, pp. 54–60.

    CAS  Google Scholar 

  17. Shtemberg A.S. Aviakosm. Ekol. Meditsina, 1997, vol. 31, no. 2, pp. 38–43.

    CAS  Google Scholar 

  18. Shtemberg A.S. Aviakosm. Ekol. Meditsina, 2005, vol. 39, no. 4, pp. 50–52.

    CAS  Google Scholar 

  19. Raber, J., Allen, A.R., Rosi, S., Sharma, S., Dayger, C., Davis, M.J., and Fike, J.R., Behav. Brain. Res., 2013, vol. 246, pp. 69–75.

    Article  CAS  PubMed  Google Scholar 

  20. Davis, C.M., De Cicco-Skinner, K.L., and Hienz, R.D., PLoS One, 2015, vol. 10, no. 12, e0144556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, H., Li, Y., Liu, Z., Cao, L., Zhang, Z., Wang, Y., Zhang, X., Liu, Z., and Shi, X., Neural Regen Res., 2016. vol. 11, no. 9, pp. 1480—1486.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang, P.Y., Doppalapudi, R., Bakke, J., Wang, A., Menda, S., and Davis, Z., Radiat. Environ. Biophys., 2010, vol. 49, no. 3, pp. 379–388.

  23. Khan, S.Y., Tariq, M.A., Perrott, J.P., Brumbaugh, C.D., Kim, H.J., Shabbir, M.I., Ramesh, G.T., and Pourmand, N., Mol. Cell. Biochem., 2013, vol. 382, nos. 1–2, pp. 225–235.

    Article  CAS  PubMed  Google Scholar 

  24. Lowe, X. and Wyrobek, A., Current Genomics, 2012, vol. 13, no. 6, pp. 489–497.

  25. Tseng, B.P., Lan, M.L., Tran, K.K., Acharya, M.M., Giedzinski, E., and Limoli, C.L., Redox. Biology, 2013, vol. 19, no. 1, pp. 153–162.

  26. Mahar, I., Bambico, F.R., Mechawar, N., and Nobrega, J.N., Neurosci. Biobehav. Rev., 2014, vol. 38, pp. 173–192.

  27. Van Bockstaele, E.J., Biswas, A., and Pickel, V.M., Brain Res., 1993, vol. 624, nos. 1–2, pp. 188–198.

  28. de Wardener, H.E., Physiol. Rev., 2001, vol. 81, no. 4, pp. 1599–1658.

    Article  CAS  PubMed  Google Scholar 

  29. Belujon, P., Patton, M.H., and Grace, A.A., Cerebral Cortex, 2014, vol. 24, no. 4, pp. 968–977.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by programs of the Russian Academy of Sciences and grants from the Russian Foundation for Basic Research: project nos. 17-29-01002-ofi_m and 17-29-01005-ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bazyan.

Ethics declarations

Ethical approval: All procedures performed in studies involving animals were in accordance with the ethical standards of bioethical commissions of the Institute of Biomedical Problems of the Russian Academy of Sciences, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, and the Zakusov Research Institute of Institute of Pharmacology of the Russian Academy of Sciences, Moscow, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest: The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva-Georgievskaya, K.B., Kokhan, V.S., Shurtakova, A.K. et al. The Neurobiological Effects of the Combined Impact of Anti-Orthostatic Hanging and Different Ionizing Irradiations. Neurochem. J. 13, 302–311 (2019). https://doi.org/10.1134/S1819712419030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419030103

Keywords:

Navigation