Skip to main content

Advertisement

Log in

Functional Brain Network Classification for Alzheimer’s Disease Detection with Deep Features and Extreme Learning Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

The human brain can be inherently modeled as a brain network, where nodes denote billions of neurons and edges denote massive connections between neurons. Analysis on functional brain networks provides powerful abilities to discover potential mechanisms of human brain, and to aid brain disease detection, such as AD (Alzheimer’s disease). Effective discrimination of patients of AD and MCI (mild cognitive impairment) from NC (normal control) is important for the early diagnosis of AD. Therefore, this paper explores the problem of brain network classification for AD detection. Two deep learning methods of functional brain network classification are designed. The convolutional learning method learns the deep regional-connectivity features, while the recurrent learning method learns the deep adjacent positional features. The ELM (extreme learning machine)-boosted structure is also implemented to further improve the learning ability. Extensive experiments are conducted to evaluate and compare the AUC (area under curve), accuracy, recall, and training time of the proposed methods on a real-world dataset. Results indicate that (1) the proposed methods which learn deep features directly from brain networks outperform shallow learning methods and (2) models with the ELM-boosted structure achieve a higher performance. This paper explores the brain networks learning with deep features and ELM. The results demonstrate that the proposed methods provide a satisfactory learning ability in the application of AD detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://ida.loni.usc.edu

References

  1. Shi F, Dey N, Ashour AS, Sifaki-Pistolla D, Sherratt RS. Meta-KANSEI modeling with Valence-Arousal fMRI dataset of brain. Cogn Comput 2019;11(2):227–240.

    Google Scholar 

  2. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, et al. Prediction of individual brain maturity using fMRI. Science 2010;329(5997):1358–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph 2018;65:115–128.

    PubMed  Google Scholar 

  4. Wang X, Ren Y, Zhang W. 2017. Depression disorder classification of fMRI data using sparse low-rank functional brain network and graph-based features. Computational and mathematical methods in medicine, Vol 2017.

  5. Termenon M, Graña M, Savio A, Akusok A, Miche Y, Björk KM, Lendasse A. Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing 2016;174:344–351.

    Google Scholar 

  6. Liu J, Li M, Lan W, Wu F-X, Pan Y, Wang J. 2016. Classification of alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

  7. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–198.

    CAS  PubMed  Google Scholar 

  8. Huang G-B, Zhu Q-Y, Siew C-K. 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Symposium on Neural Networks, Vol 2.

  9. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing 2006;70:489–501.

    Google Scholar 

  10. Raichle ME. The brain’s dark energy. Sci Am 2010;302(3):44–9.

    PubMed  Google Scholar 

  11. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100(1):253–258.

    CAS  PubMed  Google Scholar 

  12. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52(3):1059–1069.

    PubMed  Google Scholar 

  13. Liu X, Zeng Y, Zhang T, Xu B. Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn Comput 2016;8(5):967–981.

    Google Scholar 

  14. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273.

    CAS  Google Scholar 

  15. Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Brain Connect 2011;1(1):13–36.

    PubMed  Google Scholar 

  16. Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods 2012;17(3):399–417.

    PubMed  Google Scholar 

  17. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. Plos Comput Biol 2007; 3(2):e17.

    PubMed  PubMed Central  Google Scholar 

  18. Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B Biological Sciences 2006;273(1585):503.

    CAS  Google Scholar 

  19. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12(6):512–523.

    PubMed  Google Scholar 

  20. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience the Official Journal of the Society for Neuroscience 2006;26(1):63.

    CAS  Google Scholar 

  21. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005;15(9):387–413.

    Google Scholar 

  22. Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage 2009;44(3):715.

    PubMed  Google Scholar 

  23. Newman M. The structure and function of complex networks. SIAM Rev 2003;45(2):167–256.

    Google Scholar 

  24. Zhao X, Wang G, Bi X, Gong P, Zhao Y. XML Document classification based on ELM. Neurocomputing 2011;74:2444–2451.

    Google Scholar 

  25. Zhao X, Bi X, Qiao B. Probability based voting extreme learning machine for multiclass XML documents classification. World Wide Web 2014;17(5):1217–1231.

    Google Scholar 

  26. Zhao X, Bi X, Wang G, Zhang Z, Yang H. Uncertain xml documents classification using extreme learning machine. Neurocomputing 2016;174(Part A):375–382.

    Google Scholar 

  27. Wang G, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72:262–268.

    Google Scholar 

  28. Duan L, Bao M, Cui S, Qiao Y, Miao J. Motor imagery EEG classification based on kernel hierarchical extreme learning machine. Cogn Comput 2017;9(6):758–765.

    Google Scholar 

  29. Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn Comput 2018;10(2):368–380.

    Google Scholar 

  30. Bi X, Ma H, Li J, Ma Y, Chen D. 2018. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery. Journal of Ambient Intelligence and Humanized Computing.

  31. Ma Y, Yuan Y, Wang G, Bi X, Qin H. Trust-aware personalized route query using extreme learning machine in location-based social networks. Cogn Comput 2018;10(6):965–979.

    Google Scholar 

  32. Zhang Z, Zhao X. G Wang, FE-ELM: A new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–670.

    Google Scholar 

  33. Zhang Z, Zhao X, Wang G, Bi X. A new point-of-interest classification model with an extreme learning machine. Cogn Comput 2018;10(6):951–964.

    Google Scholar 

  34. Pang J, Zhao Y, Xu J, Gu Y, Yu G. Super-graph classification based on composite subgraph features and extreme learning machine. Cogn Comput 2018;10(6):922–936.

    Google Scholar 

  35. Sun Y, Li B, Yuan Y, Bi X, Zhao X, Wang G. Big graph classification frameworks based on extreme learning machine. Neurocomputing 2019;330:317–327.

    Google Scholar 

  36. Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–2443.

    Google Scholar 

  37. Sun Y, Yuan Y, Wang G. Extreme learning machine for classification over uncertain data. Neurocomputing 2014;128:500–506.

    Google Scholar 

  38. Zhao X, Ma Z, Li B, Zhang Z, Liu H. ELM-based convolutional neural networks making move prediction in Go. Soft Comput 2018;22(11):3591–3601.

    Google Scholar 

  39. Wang T, Cao J, Lai X, Chen B. Deep weighted extreme learning machine. Cogn Comput 2018;10 (6):890–907.

    Google Scholar 

  40. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput 1989;1(4):541–551.

    Google Scholar 

  41. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 1982;79(8):2554–2558.

    CAS  PubMed  Google Scholar 

  42. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Adv Neural Inf Process Syst 2014;3:2672–2680.

    Google Scholar 

  43. Yan CG, Wang XD, Zuo XN, Zang YF. Dpabi: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016;14(3):339–351.

    PubMed  Google Scholar 

  44. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–297.

    Google Scholar 

Download references

Funding

This research is partially supported by the National Natural Science Foundation of China (Grant Nos. 61702086, 61572121), the China Postdoctoral Science Foundation (Grant No. 2018M631806), the Natural Science Foundation of Liaoning Province (Grant No. 20170520164), the Fundamental Research Funds for the Central Universities of China (Grant Nos. N171904007, N171604007), and the Open Program of Neusoft Research of Intelligent Healthcare Technology, Co. Ltd. (Grant No. NRIHTOP1803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants.

Human and Animal Rights

This article does not contain any studies involving human participants and/or animals by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Zhao, X., Huang, H. et al. Functional Brain Network Classification for Alzheimer’s Disease Detection with Deep Features and Extreme Learning Machine. Cogn Comput 12, 513–527 (2020). https://doi.org/10.1007/s12559-019-09688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09688-2

Keywords

Navigation