Skip to main content
Log in

A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, the recursive approach of the Tau method is developed for numerical solution of Abel–Volterra type integral equations. Due to the singular behavior of solutions of these equations, the existing spectral approaches suffer from low accuracy. To overcome this drawback we use Müntz–Legendre polynomials as basis functions which have remarkable approximation to functions with singular behavior at origin and express Tau approximation of the exact solution based on a sequence of basis canonical polynomials that is generated by a simple recursive formula. We also provide a convergence analysis for the proposed method and obtain an exponential rate of convergence regardless of singularity behavior of the exact solution. Some examples are given to demonstrate the effectiveness of the proposed method. The results are compared with those obtained by existing numerical methods, thereby confirming the superiority of our scheme. The paper is closed by providing application of this method to approximate solution of a linear fractional integro-differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunner, H.: Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)

    Article  MathSciNet  Google Scholar 

  2. Ma, J.T., Jiang, Y.J.: On a graded mesh method for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 231, 807–814 (2009)

    Article  MathSciNet  Google Scholar 

  3. Shen, J., Sheng, C.T., Wang, Z.Q.: Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48, 315–329 (2015)

    Article  MathSciNet  Google Scholar 

  4. Sohrabi, S., Ranjbar, H., Saei, M.: Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations. Appl. Math Comput. 299, 141–152 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Diogo, T., Franco, N.B., Lima, P.: high order product integration methods for a Volterra integral equation with logarithmic singular kernel. Commun. Pure Appl. Anal. 3, 217–235 (2004)

    Article  MathSciNet  Google Scholar 

  6. Diogo, T.: Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 229, 363–372 (2009)

    Article  MathSciNet  Google Scholar 

  7. Yong, Z.X.: Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular kernel. Appl. Math. Model. 39(15), 4421–4431 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  MathSciNet  Google Scholar 

  9. Lighthill, J.M.: Contributions to the theory of the heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. 202A, 359–377 (1950)

    MathSciNet  MATH  Google Scholar 

  10. Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)

    Book  Google Scholar 

  11. De, S., Mandal, B.N., Chakrabarti, A.: Use of Abel integral equations in water wave scattering by two surface piercing barriers. Wave Motion 47(5), 279–288 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kumar, S., Kumar, A., et al.: Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. J. Egypt. Math. Soc. 23, 102–107 (2015)

    Article  MathSciNet  Google Scholar 

  13. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Sadri, K., Amini, A., Cheng, C.: A new operational method to solve Abel’s and generalized Abel’s integral equations. Int. J. Appl. Math. Comput. 317, 49–67 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Vanani, S.K., Soleyman, F.: Tau approximate solution of weakly singular Volterra integral equations. Math. Comput. Model. 57, 494–502 (2013)

    Article  MathSciNet  Google Scholar 

  16. Sahu, P.K., Ray, S.S.: A novel Legendre wavelet Petrov-Galerkin method for fractional Volterra integro-differential equations. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.04.042

    Article  Google Scholar 

  17. Lanczos, C.: Trigonometric interpolation of empirical and analytic functions. J. Math. Phys. 17, 123–199 (1938)

    Article  Google Scholar 

  18. Lanczos, C.: Applied Analysis. Prentice-hall, Englewood Cliffs (1956)

    MATH  Google Scholar 

  19. Ortiz, E.: The Tau method. SIAM J. Numer. Anal. 6, 480–492 (1969)

    Article  MathSciNet  Google Scholar 

  20. El-Daou, M.K., Al-hamad, K.M.: Computation of the canonical polynomials and applications to some optimal control problems. Numer. Algorithms 61, 545–566 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ortiz, E., Samara, L.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27(1), 15–25 (1981)

    Article  MathSciNet  Google Scholar 

  22. Pour Mahmoud, J., Rahimi Ardabili, M.Y., Shahmorad, S.: Numerical solution of the system of Fredholm integro-differential equations by the Tau method. Appl. Math. Comput 168, 465–478 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Shahmorad, S.: Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167(2), 1418–1429 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Hosseini, S.A., Shahmorad, S., Talati, F.: A matrix based method for two dimensional nonlinear Volterra–Fredholm integral equations. Numer. Algorithms 68, 511–529 (2015)

    Article  MathSciNet  Google Scholar 

  25. Bunchaft, M.E.: Some extensions of the Lanczos–Ortiz theory of canonical polynomials in the tau method. Math. Comput. 66(218), 609–621 (1997)

    Article  MathSciNet  Google Scholar 

  26. Pinkus, A.: Weierstrass and approximation theory. J. Approx. Theory. 107, 1–66 (2000)

    Article  MathSciNet  Google Scholar 

  27. Borwein, P., Erdelyi, T., Zhang, J.: Müntz systems and orthogonal Müntz–Legendre polynomials. Trans. Am. Math. Soc. 342(2), 523–542 (1994)

    MATH  Google Scholar 

  28. Milovanovic, G.V.: Müntz orthogonal polynomials and their numerical evaluation, Applications and computation of orthogonal polynomials. Int. Ser. Numer. Math. 131, 179–194 (1999)

    MATH  Google Scholar 

  29. Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz–Legendre Tau method for fractional differential equations. Appl. Math. Model. 40, 671–684 (2016)

    Article  MathSciNet  Google Scholar 

  30. Abdalkhani, J.: A numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution. J. Comput. Appl. Math. 29, 249–255 (1990)

    Article  MathSciNet  Google Scholar 

  31. Micula, S.: An iterative numerical method for fractional integral equations of the second kind. J. Comput. Appl. Math. 339, 124–133 (2018)

    Article  MathSciNet  Google Scholar 

  32. Ghoreishi, F., Hosseini, S.M.: The Tau method and a new preconditioner. J. Comput. Appl. Math. 163, 351–379 (2004)

    Article  MathSciNet  Google Scholar 

  33. Matos, J.C., Matos, J.M.A., Rodrigues, M.J.: Solving differential and integral equations with Tau method. Math. Comput. Sci. 12(2), 197–205 (2018)

    Article  MathSciNet  Google Scholar 

  34. Diethelm, K.: The Analysis of Fractional Differential Equations. Lectures Notes in Mathematics. Springer, Berlin (2010)

    Book  Google Scholar 

  35. Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms 65(4), 723–743 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Zhu, L., Wang, Z.: Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. Adv. Differ. Equ. (2018). https://doi.org/10.1186/s13662-018-1699-3

    Article  MathSciNet  MATH  Google Scholar 

  37. El-Daou, M.K., Ortiz, E.: Error analysis of the Tau method: dependence of the error on the degree and on the length of the interval of approximation. Comput. Math. Appl. 25(7), 33–45 (1993)

    Article  MathSciNet  Google Scholar 

  38. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shahmorad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we give definition of the well-known Beta function and some of its properties along with more details about the relation (39).

Beta function and its properties For \(\alpha , \beta \in {\mathbf {R}}_{+}\), the beta function is defined by

$$\begin{aligned} B(\alpha , \beta )=\int _{0}^{1}t^{\alpha -1}(1-t)^{\beta -1}dt, \end{aligned}$$

and for all \(m\in {\mathbf {N}}\) and \(0< \alpha < 1\), we have

$$\begin{aligned} B(m\alpha +1,\alpha )= & {} \int _{0}^{1}t^{m\alpha }(1-t)^{\alpha -1}dt\le \int _{0}^{1}t^{\alpha }(1-t)^{\alpha -1}dt=B(\alpha +1,\alpha ).\nonumber \\ \end{aligned}$$
(58)

Details of (39) and (40) Here we give more details of the Eqs. (39) and (40).

Landau’s order notation [37] If f(t) and g(t) are two functions for \(t\in {\mathbf {R}}\) and if \(t_{0}\in {\mathbf {R}}\), we say that \(f(t)=O(g(t))\) near \(t_{0}\) if there exists a constant \(\kappa \in {\mathbf {R}}\) such that

$$\begin{aligned} \lim _{t\rightarrow t_{0}} \frac{f(t)}{g(t)}=\kappa . \end{aligned}$$

Throughout the paper, we took all order near \(+\infty .\)

Theorem 7

[38] (Dirichlet’s test for convergence) If the sequence \(\{a_{i}\}\) has bounded partial sums \(s_{N}=\sum \nolimits _{i=1}^{N}a_{i}\) and \(b_{i}\rightarrow 0\) with \(b_{0}\ge b_{1} \ge b_{2} \ge \cdots \), then the series \(\sum \nolimits _{i=0}^\infty {a_i b_i}\) is convergent.

Now, we use this theorem to show that the relation (39) is satisfied, i.e.,

$$\begin{aligned} \sum \limits _{i=0}^{N+j}c_{N+j,i}\vartheta _{i,\ell }=O(c_{N+j,N+j}\vartheta _{N+j,\ell }) \end{aligned}$$

or equivalently

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{\sum \limits _{i=0}^{N+j}c_{N+j,i}\vartheta _{i,l}}{c_{N+j,N+j}\vartheta _{N+j,l}}=\kappa . \end{aligned}$$

By setting \(a_{i}:=\frac{c_{N+j,i}}{c_{N+j,N+j}}\) and \(b_{i}:=\frac{\vartheta _{i,l}}{\vartheta _{N+j,l}}\), from Eqs. (4), (34) and (58) we have

$$\begin{aligned} s_{N}=\sum _{i=1}^{N+j-1}\frac{c_{N+j,i}}{c_{N+j,N+j}}= & {} \frac{1-c_{N+j,N+j}}{c_{N+j,N+j}}=\frac{\alpha ^{N+j}(N+j)!}{\prod \limits _{l=0}^{N+j-1}((N+j+l)\alpha +1)}-1\rightarrow -1, \end{aligned}$$

where \( N\rightarrow \infty \) and hence \(\vert s_{N} \vert \le 2\), \(b_{0}\ge b_{1}\ge \cdots \) and \(b_{i}\rightarrow 0\), therefore \(\sum \limits _{i=0}^\infty a_{i}b_{i}\) is convergent and

$$\begin{aligned} \lim _{N\rightarrow \infty }\frac{ \sum \limits _{i=0}^{N+j}c_{N+j,i} \vartheta _{i,l}}{c_{N+j,N+j} \vartheta _{N+j,l}}= & {} \lim _{N\rightarrow \infty } \left( 1+\sum _{i=0}^{N+j-1}\frac{c_{N+j,i}\vartheta _{i,l}}{c_{N+j,N+j}\vartheta _{N+j,l}}\right) \\ {}= & {} \lim _{N\rightarrow \infty } \left( 1+\sum _{i=0}^{N+j-1} a_{i}b_{i} \right) =\kappa . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaei, Y., Shahmorad, S. & Mokhtary, P. A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations. Calcolo 56, 50 (2019). https://doi.org/10.1007/s10092-019-0347-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0347-y

Keywords

Mathematics Subject Classification

Navigation