Skip to main content
Log in

Numerical solutions of stochastic PDEs driven by arbitrary type of noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

So far the theory and numerical practice of stochastic partial differential equations (SPDEs) have dealt almost exclusively with Gaussian noise or Lévy noise. Recently, Mikulevicius and Rozovskii (Stoch Partial Differ Equ Anal Comput 4:319–360, 2016) proposed a distribution-free Skorokhod–Malliavin calculus framework that is based on generalized stochastic polynomial chaos expansion, and is compatible with arbitrary driving noise. In this paper, we conduct systematic investigation on numerical results of these newly developed distribution-free SPDEs, exhibiting the efficiency of truncated polynomial chaos solutions in approximating moments and distributions. We obtain an estimate for the mean square truncation error in the linear case. The theoretical convergence rate, also verified by numerical experiments, is exponential with respect to polynomial order and cubic with respect to number of random variables included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Askey, R., Wilson, J.A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. American Mathematical Society, Providence (1985)

    Book  MATH  Google Scholar 

  2. Benth, F.E., Gjerde, J.: A remark on the equivalence between Poisson and Gaussian stochastic partial differential equations. Potential Anal. 8, 179–193 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Debusschere, B.J., Najm, H.N., Pébay, P.P., Knio, O.M., Ghanem, R.O., Le Maıtre, O.P.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26, 698–719 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  8. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  9. Hou, T.Y., Luo, W., Rozovskii, B., Zhou, H.: Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216, 687–706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Itô, K.: Multiple Wiener integral. J. Math. Soc. Jpn. 3, 157–169 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, H.: On spectral approximations of stochastic partial differential equations driven by Poisson noise. Ph.D. Thesis, University of Southern California (2007)

  12. Lototsky, S., Mikulevicius, R., Rozovskii, B.: Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35, 435–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lototsky, S., Rozovskii, B.: Passive scalar equation in a turbulent incompressible Gaussian velocity field. Russ. Math. Surv. 59, 297–312 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lototsky, S., Rozovskii, B.: Stochastic differential equations: a Wiener chaos approach. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance, pp. 433–506. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Lototsky, S., Rozovskii, B.: Wiener chaos solutions of linear stochastic evolution equations. Ann. Probab. 34, 638–662 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lototsky, S., Rozovskii, B.: Stochastic Partial Differential Equations. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  17. Luo, W.: Wiener chaos expansion and numerical solutions of stochastic partial differential equations. Ph.D. Thesis, California Institute of Technology (2006)

  18. Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. In: Proceedings of International Symposium, SDE Kyoto 1976, Kinokuniya, pp. 195–263 (1978)

  19. Mikulevicius, R., Rozovskii, B.: Separation of observations and parameters in nonlinear filtering. In: Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1564–1569. IEEE (1993)

  20. Mikulevicius, R., Rozovskii, B.: Linear parabolic stochastic PDE and Wiener chaos. SIAM J. Math. Anal. 29, 452–480 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mikulevicius, R., Rozovskii, B.: On unbiased stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 154, 787–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mikulevicius, R., Rozovskii, B.: On distribution free Skorokhod–Malliavin calculus. Stoch. Partial Differ. Equ. Anal. Comput. 4, 319–360 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Milstein, G., Tretyakov, M.: Solving parabolic stochastic partial differential equations via averaging over characteristics. Math. Comput. 78, 2075–2106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milstein, G., Tretyakov, M.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2013)

    MATH  Google Scholar 

  25. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer, Berlin (2015)

    MATH  Google Scholar 

  26. Skorokhod, A.V.: On a generalization of a stochastic integral. Theory Probab. Appl. 20, 219–233 (1976)

    Article  MATH  Google Scholar 

  27. Venturi, D., Wan, X., Mikulevicius, R., Rozovskii, B., Karniadakis, G.: Wick-Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations. Proc. R. Soc. A R. Soc. 469, 1–20 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Wan, X., Rozovskii, B.: The Wick–Malliavin approximation of elliptic problems with log-normal random coefficients. SIAM J. Sci. Comput. 35, A2370–A2392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wick, G.C.: The evaluation of the collision matrix. Phys. Rev. 80, 268–272 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiu, D., Karniadakis, G.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiu, D., Karniadakis, G.: Supersensitivity due to uncertain boundary conditions. Int. J. Numer. Methods Eng. 61, 2114–2138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  34. Zhang, Z., Rozovskii, B., Tretyakov, M., Karniadakis, G.: A multistage Wiener chaos expansion method for stochastic advection-diffusion-reaction equations. SIAM J. Sci. Comput. 34, A914–A936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Z., Tretyakov, M., Rozovskii, B., Karniadakis, G.: A recursive sparse grid collocation method for differential equations with white noise. SIAM J. Sci. Comput. 36, A1652–A1677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Z., Tretyakov, M., Rozovskii, B., Karniadakis, G.: Wiener chaos versus stochastic collocation methods for linear advection-diffusion-reaction equations with multiplicative white noise. SIAM J. Numer. Anal. 53, 153–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Z., Karniadakis, G.: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  38. Zheng, M., Rozovskii, B., Karniadakis, G.: Adaptive Wick–Malliavin approximation to nonlinear SPDEs with discrete random variables. SIAM J. Sci. Comput. 37, A1872–A1890 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michael Tretyakov and Zhongqiang Zhang for helpful discussions on the relation between commutativity and K-version convergence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Additional information

Research supported by ARO Grant W911NF-16-1-0103.

Appendix A: Interaction coefficients \(B(\alpha ,\beta ,p)\)

Appendix A: Interaction coefficients \(B(\alpha ,\beta ,p)\)

We still assume that \(\{\xi _k\}_{k=1}^{\infty }\) are i.i.d. random variables. Then the interaction coefficient \(B(\alpha ,\beta ,p)\) can be decomposed into

$$\begin{aligned} B(\alpha ,\beta ,p)= & {} \frac{{\mathbb {E}}[\Phi _{\alpha }\Phi _{\beta }\Phi _{p}]}{\alpha !}\nonumber \\= & {} \prod _{k=1}^{\infty }\frac{{\mathbb {E}}[\varphi _{\alpha _k}(\xi _k)\varphi _{\beta _k}(\xi _k)\varphi _{p_k}(\xi _k)]}{\alpha _k!}:=\prod _{k=1}^{\infty }b(\alpha _k,\beta _k,p_k). \end{aligned}$$
(A.1)

It suffices to compute b(ijl) for any \(i,j,l\ge 0\). According to orthogonality,

$$\begin{aligned} \varphi _j(\xi )\varphi _l(\xi )=\sum _{i=0}^{\infty }\frac{{\mathbb {E}}[\varphi _i(\xi )\varphi _j(\xi )\varphi _l(\xi )]}{i!}\varphi _i(\xi )=\sum _{i=0}^{\infty }b(i,j,l)\varphi _i(\xi ). \end{aligned}$$
(A.2)

Hence b(ijl) is the ith expansion coefficient of \(\varphi _j(\xi )\varphi _l(\xi )\) in terms of \(\{\varphi _n(\xi )\}_{n=0}^{\infty }\). In particular, for the three types of noises and corresponding orthogonal polynomials considered in Section 4, there are explicit formulas for these expansion coefficients.

  • For Gaussian noise and Hermite chaos. \(\varphi _n(\xi )=He_n(\xi )\). Since

    $$\begin{aligned} He_j(x)He_l(x)=\sum _{r=0}^{\min \{j,l\}}\frac{j!l!}{(j-r)!(l-r)!r!}He_{j+l-2r}(x), \end{aligned}$$
    (A.3)

    we have

    $$\begin{aligned} b(i,j,l)=\left\{ \begin{array}{ll} \frac{j!l!}{(j-r)!(l-r)!r!} &{}\quad \text {if }i=j+l-2r\text { and }r\le \min \{i,j\}\\ 0 &{}\quad \text {otherwise} \end{array}\right. . \end{aligned}$$
    (A.4)
  • For uniform noise and Legendre chaos, \(\varphi _n(\xi )=\sqrt{(2n+1)n!}L_n(\xi /\sqrt{3})\). Define

    $$\begin{aligned} \lambda _n:=\frac{\Gamma (n+1/2)}{n!\Gamma (1/2)}=\frac{\prod _{m=0}^{n-1}(m+1/2)}{n!}. \end{aligned}$$

    Then the expansion of \(L_j(x)L_l(x)\) is

    $$\begin{aligned} L_j(x)L_l(x)=\sum _{r=0}^{\min \{j,l\}}\frac{2(j+l-2r)+1}{2(j+l-r)+1}\frac{\lambda _r\lambda _{i-r}\lambda _{j-r}}{\lambda _{i+j-r}}L_{j+l-2r}(x). \end{aligned}$$
    (A.5)

    Thus

    $$\begin{aligned} b(i,j,l)=\left\{ \begin{array}{ll} \frac{\sqrt{(2i+1)(2j+1)(2l+1)}}{2(j+l-r)+1}\sqrt{\frac{j!l!}{i!}}\frac{\lambda _r\lambda _{i-r}\lambda _{j-r}}{\lambda _{i+j-r}} &{}\quad \text {if }i=j+l-2r\text { and }r\le \min \{i,j\}\\ 0 &{}\quad \text {otherwise} \end{array}\right. . \end{aligned}$$
    (A.6)
  • For Beta\((\frac{1}{2},\frac{1}{2})\) noise and Chebyshev chaos, \(\varphi _n(\xi )=\sqrt{c_nn!}T_n(\xi /\sqrt{2})\) where \(c_0=1\) and \(c_n=2\) for \(n\ge 1\). Since Chebyshev polynomials are essentially cosine functions,

    $$\begin{aligned} T_j(x)T_l(x)=\frac{1}{2}T_{j+l}(x)+\frac{1}{2}T_{\vert j-l\vert }(x). \end{aligned}$$
    (A.7)

    Thus

    $$\begin{aligned} b(i,j,l)=\left\{ \begin{array}{ll} 1 &{}\quad \text {if }i=j,l=0\text { or }i=l,j=0\\ \frac{1}{2}\sqrt{\frac{c_jc_l}{c_i}}\sqrt{\frac{j!l!}{i!}} &{}\quad \text {if }j,l>0\text { and }i=j+l\text { or }i=\vert j-l\vert \\ 0 &{}\quad \text {otherwise}\\ \end{array}\right. . \end{aligned}$$
    (A.8)

    Here the expansion coefficients have a sparse pattern. For fixed j and l, there are at most two values of i such that b(ijl) is nonzero.

In general, we compute b(ijl) by matching the monomial coefficients on the both sides of (A.2) (see e.g., [38]). Suppose that

$$\begin{aligned} \varphi _n(\xi )=\sum _{m=0}^nP_{m,n}\xi ^m. \end{aligned}$$

According to (A.2), for \(i>j+l\), \(b(i,j,l)=0\), and \(\{b(i,j,l):0\le i\le j+l\}\) satisfies the following linear system

$$\begin{aligned} \sum _{i=0}^{j+l}b(i,j,l)P_{m,i}=\sum _{r=\max \{0,i-l\}}^{\min \{i,j\}}P_{r,j}P_{i-r,l}. \end{aligned}$$
(A.9)

It is easy to solve (A.9) directly as \(\{P_{m,n}\}_{m,n=0}^{j+l}\) is a upper triangular matrix. This procedure is applicable to any set of orthogonal polynomials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Rozovskii, B. & Shu, CW. Numerical solutions of stochastic PDEs driven by arbitrary type of noise. Stoch PDE: Anal Comp 7, 1–39 (2019). https://doi.org/10.1007/s40072-018-0120-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0120-2

Keywords

Navigation