Skip to main content
Log in

A new algorithm for quadratic integer programming problems with cardinality constraint

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Quadratic integer programming problems with cardinality constraint have many applications in real life. Portfolio selection is an important application in financial optimization. In this paper we develop an exact and efficient algorithm for quadratic integer programming problems with cardinality constraint. This iterative algorithm is actually a branch and bound method, which adopts a domain cut and partition scheme. Removing cardinality constraint and integrality constraints on variables, the relaxation problem is a quadratic programming problem. By solving the quadratic programming problem, we find a lower bound for the optimal objective function value of the primal problem. The domain cut technique is used to cut off some regions that do not contain any feasible solution better than the incumbent solution. Thus the optimality gap is reduced greatly. The finite number of iterations is clear from the fact that there are only a finite number of feasible integer solutions in the feasible region. Encouraging computational results are also reported in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. min, max and avg stand for minimum, maximum and average results by running the algorithm for 10 test problems; ratio is the ratio of the number of the problems where the cardinality constraint is active to the number of the test problems 10.

References

  1. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  2. Markowitz, H.: Portfolio selection. J. Financ. 1, 77–91 (1952)

    Google Scholar 

  3. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investment. Wiley, New York (1959)

    Google Scholar 

  4. Hakansson, N.H.: Multi-period mean-variance analysis: toward a theory of portfolio choice. J. Financ. 26, 857–884 (1971)

    Google Scholar 

  5. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: mutiperiod mean-variance formulation. Math. Financ. 10, 387–406 (2000)

    Article  MATH  Google Scholar 

  6. Mossin, J.: Optimal multiperiod portfolio policies. J. Bus. 41, 215–229 (1968)

    Article  Google Scholar 

  7. Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51, 239–246 (1969)

    Article  Google Scholar 

  8. Zariphoulou, T.: Investment-consumption models with transactions costs and Marko chain parameters. SIAM J. Control Optim. 30, 613–636 (1992)

    Article  MathSciNet  Google Scholar 

  9. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burdett, C.A., Johnson, E.L.: A subadditive approach to solve linear integer programs. Ann. Discret. Math. 1, 117–144 (1977)

    Article  MathSciNet  Google Scholar 

  11. Shaw, D.X., Liu, S.C., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23(3), 411–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Financ. 1, 1–13 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cervinka, M., Kanzow, Ch., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160(1–2), 353–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zheng, X.J., Sun, X.L., Li, D.: Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach. INFORMS J. Comput. 26(4), 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, J.J., Li, D.: Optimal cardinality constrained portfolio selection. Oper. Res. 61(3), 745–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mansini, R., Speranza, M.G.: Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res. 114, 219–223 (1999)

    Article  MATH  Google Scholar 

  18. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, D., Sun, X.L., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Financ. 16(1), 83–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, F.L.: A new exact algorithm for concave knapsack problems with integer variables. Int. J. Comput. Math. 96(1), 126–134 (2018)

    Article  MathSciNet  Google Scholar 

  21. Li, D., Sun, X.L., Wang, F.L.: Convergent Lagrangian and contour cut method for nonlinear integer programming with a quadratic objective function. SIAM J. Optim. 17, 372–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenlan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cao, L. A new algorithm for quadratic integer programming problems with cardinality constraint. Japan J. Indust. Appl. Math. 37, 449–460 (2020). https://doi.org/10.1007/s13160-019-00403-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00403-0

Keywords

Mathematics Subject Classification

Navigation