Skip to main content

Advertisement

Log in

Diversification and gene flow of tilapia species driven by ecological changes in lowland and mountain areas of southern Mauritania

  • Natural History Notes
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Haplotilapiine are members of Cichlidae (cichlid fishes), one of the most species-rich vertebrate families. Many haplotilapiines diversified via allopatric divergence, sexual selection, hybridization and ecological adaptation, making them excellent models for evolutionary research. One extraordinary example of how haplotilapiine diversified are the species found within the Sahara desert, surviving in isolated wetlands for thousands of years. Seasonal, and longer, climate cycles in these areas have resulted in periods of connectivity and isolation within and between lowland and mountain regions via ephemeral rivers, which highly impacts the potential for migration of water-species. Here we studied how ecological variability and secondary contact have affected the population genetics of haplotilapiine cichlid fishes (Sarotherodon galilaeus), in the lowland Karakoro sub-basin and highland Afollé mountain regions of Mauritania. We used DNA-sequence data of mitochondrial (ND2, N = 59) and nuclear (S7 1st intron, N = 32) genes, and microsatellite markers data (13 novel loci developed for Sarotherodon, N = 61). Our results based on microsatellite data showed two genetically differentiated lowland groups of S. galilaeus that exist in sympatry. Absence of one of these groups in mountain areas can be due to small sample size or local extinction. We found no significant genetic differentiation between lowland and mountain based on microsatellite and mtDNA data, supporting our hypothesis of recent, downstream gene flow. As expected, genetic diversity was significantly lower in mountain population, which can be due to different factors, including stochastic effects or downstream migration increasing diversity via gene flow. Ecological changes (seasonal and long-term) have likely driven divergence and posterior secondary contacts on the studied Sarotherodon lineages at multiple times, leaving open questions for future studies about the specifics of these evolutionary processes. Moreover, the pattern of genetic diversity in lowland and mountain populations highlights the importance of protecting geographically isolated areas for long-term persistence of tilapia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Anderson E, Stebbins G (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388

    Article  Google Scholar 

  • Baena-Díaz F, Ramírez-Barahona S, Ornelas JF (2018) Hybridization and differential introgression associated with environmental shifts in a mistletoe species complex. Sci Rep 8:5591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bell MA, Travis MP (2005) Hybridization, transgressive segregation, genetic covariation, and adaptive radiation. Trends Ecol Evol 20:358–361

    Article  PubMed  Google Scholar 

  • Beveridge MC, McAndrew BJ (2000) Tilapias: biology and exploitation. Springer, New York

    Book  Google Scholar 

  • Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Lim ZW, Bezault E (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito JC, Godinho R, Martínez-Freiría F, Pleguezuelos JM, Rebelo H, Santos X, Vale CG, Velo-Antón G, Boratyński Z, Carvalho SB, Ferreira S, Gonçalves DV, Silva TL, Tarroso P, Campos JC, Leite JV, Nogueira J, Álvares F, Sillero N, Sow AS, Fahd S, Crochet P-A, Carranza S (2014) Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol Rev 89:215–231

    Article  PubMed  Google Scholar 

  • Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256

    CAS  PubMed  Google Scholar 

  • Clavero M, Esquivias J, Qninba A, Riesco M, Calzada J, Ribeiro F, Fernández N, Delibes M (2015) Fish invading deserts: non-native species in arid Moroccan rivers. Aquat Conserv 25:49–60

    Article  Google Scholar 

  • Cooper A, Shine T, McCann T, Tidane D (2006) An ecological basis for sustainable land use of Eastern Mauritanian wetlands. J Arid Environ 67:116–141

    Article  Google Scholar 

  • D’Amato ME, Esterhuyse MM, Van Der Waal BC, Brink D, Volckaert FA (2007) Hybridization and phylogeography of the Mozambique tilapia Oreochromis mossambicus in southern Africa evidenced by mitochondrial and microsatellite DNA genotyping. Conserv Genet 8:475–488

    Article  CAS  Google Scholar 

  • Dunz AR, Schliewen UK (2013) Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Mol Phylogenet Evol 68:64–80

    Article  PubMed  Google Scholar 

  • Earl DA (2012) Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ford AGP, Bullena TR, Panga L, Gennerc MJ, Billsd R, Flouria T, Ngatungae BP, Ruberf L, Schliewenh UK, Seehauseng O, Shechongee A, Stiassnyk MLJ, Turnerl GF, Day JJ (2019) Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Mol Phylogenet Evol 136:215–226

    Article  PubMed  Google Scholar 

  • Franck J, Wright JM, McAndrew B (1992) Genetic variability in a family of satellite DNAs from tilapia (Pisces: Cichlidae). Genome 35:719–725

    Article  CAS  PubMed  Google Scholar 

  • Franck JP, Kornfield I, Wright JM (1994) The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes. Mol Phylogenet Evol 3:10–16

    Article  CAS  PubMed  Google Scholar 

  • Fryer G, Iles T (1969) Alternative routes to evolutionary success as exhibited by African cichlid fishes of the genus Tilapia and the species flocks of the Great Lakes. Evolution 23:359–369

    Article  PubMed  Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19:189–211

    Article  Google Scholar 

  • Godinho R, López-Bao JV, Castro D, Llaneza L, Lopes S, Silva P, Ferrand N (2015) Real-time assessment of hybridization between wolves and dogs: combining noninvasive samples with ancestry informative markers. Mol Ecol Res 15:317–328

    Article  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 3 Mar 2014

  • Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. Sinauer Associates, Suderland

    Google Scholar 

  • Holmes JA (2008) How the Sahara became dry. Science 320:752–753

    Article  CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Kide NG, Dunz A, Agnèse JF, Dilyte J, Pariselle A, Carneiro C, Correia E, Brito JC, Yarba LO, Kone Y, Durand JD (2016) Cichlids of the Banc d’Arguin National Park, Mauritania: insight into the diversity of the genus Coptodon. J Fish Biol 88:1369–1393

    Article  CAS  PubMed  Google Scholar 

  • Klett V, Meyer A (2002) What, if anything, is a Tilapia? Mitochondrial ND2 phylogeny of tilapiines and the evolution of parental care systems in the African cichlid fishes. Mol Biol Evol 19:865–883

    Article  CAS  PubMed  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  • Kornfield I, Ritte U, Richler C, Wahrman J (1979) Biochemical and cytological differentiation among cichlid fishes of the Sea of Galilee. Evolution 33:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kröpelin S, Verschuren D, Lézine A-M, Eggermont H, Cocquyt C, Francus P, Cazet J-P, Fagot M, Rumes B, Russell J (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320:765–768

    Article  PubMed  CAS  Google Scholar 

  • Leigh J, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Lévêque C (1990) Relict tropical fish fauna in Central Sahara. Ichthyol Explor Freshw 1:39–48

    Google Scholar 

  • Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool 22:425–441

    Article  Google Scholar 

  • Lowe RH (1955) Species of Tilapia in East African dams, with a key for their identification. East Afr Agric For J 20:256–262

    Google Scholar 

  • Marsjan P, Oldenbroek J (2007) Molecular markers, a tool for exploring gene diversity. In: Pilling D, Rischkowsky B (eds) The state of the world’s animal genetic resources for food and agriculture. FAO, Rome, pp 359–379

    Google Scholar 

  • McAndrew B, Majumdar K (1984) Evolutionary relationships within three Tilapiine genera (Pisces: Cichlidae). Zool J Linn Soc 80:421–435

    Article  Google Scholar 

  • Nevado B, Fazalova V, Backeljau T, Hanssens M, Verheyen E (2011) Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids. Mol Biol Evol 28:2253–2267

    Article  CAS  PubMed  Google Scholar 

  • Park S (2001) The excel microsatellite toolkit (version 3.1). Animal Genomics Laboratory, UCD, Ireland

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Drummond A (2009) Tracer: MCMC trace analysis tool, version 1.5. http://tree.bio.ed.ac.uk/software/tracer. Accessed 3 Mar 2014

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rozas J, Rozas R (1995) DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci 11:621–625

    CAS  PubMed  Google Scholar 

  • Salzburger W, Baric S, Sturmbauer C (2002) Speciation via introgressive hybridization in East African cichlids? Mol Ecol 11:619–625

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer J, Misof B, Tautz D, Schliewen UK (2009) The root of the East African cichlid radiations. BMC Evol Biol 9:186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sodsuk P, McAndrew B (1991) Molecular systematics of three tilapüne genera Tilapia, Sarotherodon and Oreochromis using allozyme data. J Fish Biol 39:301–308

    Article  CAS  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streelman JT, Gmyrek S, Kidd M, Kidd C, Robinson R, Hert E, Ambali A, Kocher T (2004) Hybridization and contemporary evolution in an introduced cichlid fish from Lake Malawi National Park. Mol Ecol 13:2471–2479

    Article  CAS  PubMed  Google Scholar 

  • Sültmann H, Mayer WE (1997) Reconstruction of cichlid fish phylogeny using nuclear DNA markers. In: Kocher T, Stepien C (eds) Molecular systematics of fishes. Academic Press, Cambridge, pp 39–51

    Chapter  Google Scholar 

  • Sültmann H, Mayer WE, Figueroa F, Tichy H, Klein J (1995) Phylogenetic analysis of cichlid fishes using nuclear DNA markers. Mol Biol Evol 12:1033–1047

    PubMed  Google Scholar 

  • Tibihika PD, Waidbacher H, Masembe C, Curto M, Sabatino S, Alemayehu E, Meulenbroek P, Akoll P, Meimberg H (2018) Anthropogenic impacts on the contextual morphological diversification and adaptation of Nile tilapia (Oreochromis niloticus, L. 1758) in East Africa. Environ Biol Fish 101:363–381

    Article  Google Scholar 

  • Tobler M, Carson EW (2010) Environmental variation, hybridization, and phenotypic diversification in Cuatro Ciénegas pupfishes. J Evol Biol 23:1475–1489

    Article  CAS  PubMed  Google Scholar 

  • Trape S (2009) Impact of climate change on the relict tropical fish fauna of Central Sahara: threat for the survival of Adrar mountains fishes, Mauritania. PLoS ONE 4:e4400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum Natural History, London, p 583

    Book  Google Scholar 

  • Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2006) MICROCHECKER v. 2.2. 3. University of Hull, Kingston-upon-Hull. www.microchecker.hull.ac.uk. Accessed 3 Mar 2014

  • Velo-Antón G, Godinho R, Campos JC, Brito JC (2014) Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African Crocodiles. PLoS ONE 9:e94626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolson R (2007) Wilcoxon signed-rank test. In: D'Agostino R, Massaro J, Sullivan L (eds) Wiley encyclopedia of clinical trials. John Wiley Sons, pp 1–3

Download references

Acknowledgements

This work was made in memory of Professor Paulo Alexandrino who was for us a mentor, an inspiration and a very good friend. We thank AS Sow, DV Gonçalves, JC Campos, N Sillero, and P Tarroso for sampling support. Acknowledgements to S Lopes, DV Gonçalves, FMS Martins, JC Campos and P Pereira for lab assistance, data analysis and figure building. Funding provided by National Geographic Society (CRE-8412-08), Mohammed bin Zayed Species Conservation Fund (11052709, 11052707), Fundação para a Ciência e Tecnologia (FCT: PTDC/BIA-BEC/099934/2008, PTDC/BIA-BIC/2903/2012), FEDER through COMPETE-Operational Programme for Competitiveness Factors (FCOMP-01-0124-FEDER-008917, -028276), and by AGRIGEN–NORTE-01-0145-FEDER-000007, supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Individual support given by FCT (IF/459/2013 and IF/00564/2012). Logistic support for fieldwork was given by SMO Lehlou (Ministère de l’Environnement et du Développement Durable of Mauritania), D Hamidou (University of Nouakchott), and A Araújo (MAVA Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Brito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilytė, J., Sabatino, S., Godinho, R. et al. Diversification and gene flow of tilapia species driven by ecological changes in lowland and mountain areas of southern Mauritania. Evol Ecol 34, 133–146 (2020). https://doi.org/10.1007/s10682-019-10017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-019-10017-0

Keywords

Navigation