Skip to main content
Log in

Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90]4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Orifici, A.C., Herszberg, I., Thomson, R.S.: Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 86, 194–210 (2008)

    Article  Google Scholar 

  2. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  3. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  4. Meng, Q., Wang, Z.: Micromechanical modeling of impact damage mechanisms in unidirectional composite laminates. Appl. Compos. Mater. 23, 1099–1116 (2016)

    Article  Google Scholar 

  5. Tay, T.E., Tan, S.H.N., Tan, V.B.C., Gosse, J.H.: Damage progression by the element-failure method (EFM) and strain invariant failure theory (SIFT). Compos. Sci. Technol. 65, 935–944 (2005)

    Article  Google Scholar 

  6. Tay, T.E., Liu, G., Tan, V.B.C., Sun, X.S., Pham, D.C.: Progressive failure analysis of composites. J. Compos. Mater. 42, 1921–1966 (2008)

    Article  Google Scholar 

  7. Ha, S.K., Huang, Y., Han, H.H., Jin, K.K.: Micromechanics of failure for ultimate strength predictions of composite laminates. J. Compos. Mater. 44, 2347–2361 (2010)

    Article  Google Scholar 

  8. Sun, X.S., Tan, V.B.C., Tay, T.E.: Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method. Comput. Struct. 89, 1103–1116 (2011)

    Article  Google Scholar 

  9. Cai, H., Miyano, Y., Nakada, M.: Long-term open-hole compression strength of CFRP laminates based on strain invariant failure theory. J. Thermoplast. Compos. Mater. 22, 63–81 (2009)

    Article  Google Scholar 

  10. Ha, S.K., Jin, K.K., Huang, Y.C.: Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42, 1873–1895 (2008)

    Article  Google Scholar 

  11. Sihn, S.: Strength prediction of composites using micromechanics-based failure. In: Tsai, S.W. (eds) Strength & Life of Composites, pp. 6-29–6-51. JEC-Composites, Stanford University (2008)

  12. Lee, J., Soutis, C.: Measuring the notched compressive strength of composite laminates: specimen size effects. Compos. Sci. Technol. 68, 2359–2366 (2008)

    Article  Google Scholar 

  13. Lee, H.K., Kim, B.R.: Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout. Compos. Sci. Technol. 67, 2221–2230 (2007)

    Article  Google Scholar 

  14. Soutis, C., Filiou, C.: Stress distributions around holes in composite laminates subjected to biaxial loading. Appl. Compos. Mater. 5, 365–378 (1998)

    Article  Google Scholar 

  15. Soutis, C.: Compressive strength of composite laminates with an open hole: effect of ply blocking. J. Compos. Mater. 47, 2503–2512 (2013)

    Article  Google Scholar 

  16. Su, Z.C., Tay, T.E., Ridha, M., Chen, B.Y.: Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 122, 507–517 (2015)

    Article  Google Scholar 

  17. Suemasu, H., Takahashi, H., Ishikawa, T.: On failure mechanisms of composite laminates with an open hole subjected to compressive load. Compos. Sci. Technol. 66, 634–641 (2006)

    Article  Google Scholar 

  18. Suemasu, H., Naito, Y., Gozu, K., Aoki, Y.: Damage initiation and growth in composite laminates during open hole compression tests. Adv. Compos. Mater. 21, 209–220 (2012)

    Article  Google Scholar 

  19. Jin, K.K., Huang, Y.C., Lee, Y.H., Ha, S.K.: Distribution of micro stresses and interfacial tractions in unidirectional composites. J. Compos. Mater. 42, 1825–1849 (2008)

    Article  Google Scholar 

  20. Li, X., Guan, Z.D., Li, Z.S., Liu, L.: A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chin. J. Aeronaut. 27, 1430–1441 (2014)

    Article  Google Scholar 

  21. Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)

    Article  Google Scholar 

  22. Aymerich, F., Dore, F., Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos. Sci. Technol. 68, 2383–2390 (2008)

    Article  Google Scholar 

  23. Reeder, J.R. An evaluation of mixed-mode delamination. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (NASA); 1992. Report No: NASA/TM-1992–104210

  24. Dávila, C.G., Camanho, P.P., Moura, M.F.: Mixed-mode decohesion elements for analysis of progressive delamination. Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structure dynamics, and materials conference and exhibit, 45–55 Seattle (2001)

  25. Jiang, W.G., Hallett, S.R., Green, B.G., Wisnom, M.R.: A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int. J. Numer. Methods Eng. 69, 1982–1995 (2007)

    Article  Google Scholar 

  26. Pinho, S.T., Iannucci, L., Robinson, P.: Formulation and implementation of decohesion elements in an explicit finite element code. Compos. A: Appl. Sci. Manuf. 37, 778–789 (2006)

    Article  Google Scholar 

  27. Harper, P.W., Hallett, S.R.: A fatigue degradation law for cohesive interface elements - development and application to composite materials. Int. J. Fatigue. 32, 1774–1787 (2010)

    Article  Google Scholar 

  28. Mayes, J.S., Hansen, A.C.: Composite laminate failure analysis using multicontinuum theory. Compos. Sci. Technol. 64, 379–394 (2004)

    Article  Google Scholar 

  29. Brewer, J.C., Lagace, P.A.: Quadratic stress criterion for initiation of delamination. J. Compos. Mater. 22, 1141–1155 (1988)

    Article  Google Scholar 

  30. Davila, C.G., Johnson, E.R.: Analysis of delamination initiation in postbuckled dropped-ply laminates. AIAA J. 31, 721–727 (1993)

    Article  Google Scholar 

  31. Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)

    Article  Google Scholar 

  32. ASTM D5528. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken, PA, USA: American Society for Testing and Materials (ASTM) 2002

  33. ASTM D7095. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken, PA, USA: American Society for Testing and Materials (ASTM) 2014

  34. Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–781 (1976)

    Article  Google Scholar 

  35. Iarve, E.V., Pagano, N.J.: Singular full-field stresses in composite laminates with open holes. Int. J. Solids Struct. 38, 1–28 (2001)

    Article  Google Scholar 

  36. Wisnom, M.R., Hallett, S.R., Soutis, C.: Scaling effects in notched composites. J. Compos. Mater. 44, 195–210 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Guan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guan, Z., Tan, R. et al. Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy. Appl Compos Mater 26, 923–944 (2019). https://doi.org/10.1007/s10443-019-9759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-9759-8

Keywords

Navigation