Skip to main content

Advertisement

Log in

The importance of nonrandom and random trait patterns in phytoplankton communities: a case study from Lake Müggelsee, Germany

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

A fundamental challenge in ecology is to identify the processes which explain how species come to occupy diverse communities. There is uncertainty about whether community composition arises through deterministic processes, whereby trait differences between species make them more or less adapted to certain environmental conditions. We tested the capacity for deterministic processes to explain the long-term dynamics of phytoplankton community structure in Lake Müggelsee—a shallow and eutrophic lake in Berlin, Germany using a trait-based approach. We developed a null model representing random processes alone by generating a time series of random trait distributions derived from the observed long-term data. We determined the extent to which deterministic processes lead to nonrandom patterns in phytoplankton communities by comparing the resulting null-trait distributions with the observed trait distributions in the long-term data. We found that phytoplankton communities fell along a gradient from random to nonrandom trait distributions, suggesting that deterministic processes alone do not fully describe the community structure. Nonrandom patterns were observed in communities with high species richness and during late spring as well as early winter. But neither species richness nor seasonality explained nonrandom patterns consistently for different metrics and traits given the high relevance of random trait distribution patterns. Thus, deterministic and stochastic processes may be needed to fully explain the structure of phytoplankton communities under changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632

    Article  Google Scholar 

  • Benincà E, Huisma J, Heerkloss R, Jöhnk KD, Branco P, van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–826

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman J (2011) A phylogenetic approach to the estimation of phytoplankton traits. J Phycol 47:52–65

    Article  PubMed  Google Scholar 

  • Bruggeman J, Heringa J, Brandt BW (2009) PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res 37:W179–W184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

  • Chase JM, Myers AM (2011) Disentangling the ipmortance of ecological niches from stochastic processes across scale. Phil Trans R Soc B 366:2351–2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chesson P, Huntley N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150(5):519–553

    Article  CAS  PubMed  Google Scholar 

  • Connor EF, Simberloff D (1979) The assembly of species communities: chance or competition? Ecology 60(6):1132–1140

    Article  Google Scholar 

  • Conradi T, Vicky MT, Kollmann J (2017) Resource availability determines the importance of niche-based versus stochastic community assembly in grasslands. Oikos 126:1134–1141

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79(1):109–126

    Article  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87(6):1465–1471

    Article  PubMed  Google Scholar 

  • Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F (2016) Unravelling the role of deterministic and stochasticity in structuring the phytoplankton metacommunity of the Paraná River floodplain. Hydrobiologia 764:139–156

    Article  CAS  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Driescher E, Behrendt H, Schellenberger G, Stellmacher R (1993) Lake Müggelsee and its environment—natural conditions and anthropogenic impacts. Int Rev Ges Hydrobio 78:327–343

    Article  CAS  Google Scholar 

  • Engen S, Bakke Ø, Islam A (1998) Demographic and environmental stochasticity—concepts and definitions. Biometrics 54:840–846

    Article  Google Scholar 

  • Ernest SKM, Brown JH, Thibault KM, White EP, Goheen JR (2008) Zero sum, the niche, and metacommunities: long-term dynamics of community assembly. Am Nat 172:E257–E269

    Article  PubMed  Google Scholar 

  • Fisher VK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. PNAS 111:13111–13116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45(5):1058–1066

    Article  Google Scholar 

  • Götzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, Leps J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev 87:111–127

    Article  PubMed  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433

    Article  Google Scholar 

  • Hardin G (1960) Competitive exclusion principle. Science 131:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Heino J, Tolkkinen M, Pirttilä AM, Asaila H, Mykrä H (2014) Microbial diversity and community-environment relationships in boreal streams. J Biogeogr 41:2234–2244

    Article  Google Scholar 

  • Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multistate discrete characters. Taxon 25:249–255

    Article  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, Oxford

    Google Scholar 

  • Huber V, Adrian R, Gerten D (2008) Phytoplankton reponse to climate warming modified by trophic state. Limnol Oceanogr 53:1–13

    Article  Google Scholar 

  • Huber V, Wagner C, Gerten D, Adrian R (2012) To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169:245–256

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Hutchinson GR (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Klais R, Norros V, Lehtinen S, Tamminen T, Olli K (2017) Community assembly and drivers of phytoplankton functional structure. Funct Ecol 31:760–767

    Article  Google Scholar 

  • Köhler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, Walz N (2005) Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw Biol 50:1639–1650

    Article  CAS  Google Scholar 

  • Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an amazonian forest. Science 322:580–582

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2014) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Lande R, Engen S, Saether BE (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Levine SN, Borchardt MA, Braner M, d. Shambaugh A (1999) The impact of zooplankton grazing on pyhtoplankton species composition and biomass in Lake Champlain (USA-Canada). J Great Lakes Res 25:61–77

    Article  Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639

    Article  Google Scholar 

  • Masuda Y, Yamanaka Y, Hirata T, Nakano H (2016) Competition and community assemblage dynamics within a phytoplankton functional group: simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model 343:1–14

    Article  Google Scholar 

  • May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proc Natl Acad Sci U S A 69:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • Mutshinda CM, Finkel ZV, Widdicombe CE, Irwin AJ (2016) Ecological equivalence of species within phytoplankton functional groups. Funct Ecol 30:1714–1722

    Article  Google Scholar 

  • Özkundakci D, Gsell AS, Hintze T, Täuscher H, Adrian R (2016) Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes. Glob Chang Biol 22:284–298

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing

    Google Scholar 

  • Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. PNAS 103:6230–6235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, Rinaldo S, Huisman J, Weissing FJ (2003) Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologie 491:9–18

    Article  Google Scholar 

  • Schmidt SR, Lischeid G, Hintze T, Adrian R (2018) Disentangling limnological processes in the time-frequency domain. Limnol Oceanogr 9999:1–18

    Google Scholar 

  • Soininen J, Heino J (2007) Variation in niche parameters along a diversity gradient of unicellular eukaryote assemblages. Protest 158:181–191

    Article  Google Scholar 

  • Soininen J, Heino J, Lappalainen J, Virtanen R (2011) Exanding the ecological niche approach: relationships between variability in niche position and species richness. Ecological Copmlexity 8:130–137

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New York

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sommer U, Adrian R, Domis LD, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lüring M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448

    Article  Google Scholar 

  • Su X, Steinman AD, Xue Q, Zhao Y, Tang Y, Xie L (2017) Temporal patterns of phyto-bacterioplankton and their relationships with environmental factors in Lake Taihu, China. Chemosphere 184:299–308

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1982) Resource partitioning and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Ulrich W, Almeida-Neto M (2012) On the meanings of nestedness: back to the basics. Ecography 35:1–7

    Article  Google Scholar 

  • Ulrich W, Zalewski M (2007) Are ground beetles neutral? Basic Appl Ecol 8:411–420

    Article  Google Scholar 

  • Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilung Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–38

    Google Scholar 

  • Vellend M (2016) The theory of ecological communities. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Article  Google Scholar 

  • Wagner C, Adrian R (2011) Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshw Biol 56:1949–1961

    Article  Google Scholar 

  • Walker SC, Cyr H (2007) Testing the standard neutral model of biodiversity in lake communities. Oikos 116:143–155

    Article  Google Scholar 

  • Weiher E, Keddy P (1999) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wood (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20–25

    Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric gernalized linear models. J R Stat Soc (B) 73:3–36

    Article  Google Scholar 

Download references

Acknowledgments

We thank all staff of the Leibniz-Institute of Freshwater Ecology and Inland Fisheries who have been involved in the collection and compilation of the long-term data set of Lake Müggelsee. We are especially grateful to Helgard Täuscher and Katrin Preuss for processing the phytoplankton data and their commitment to phytoplankton taxonomy and to Thomas Hintze for his commitment to the Müggelsee automatic research station. We thank Ulrike Scharfenberger, Silke R. Schmidt, Alena S. Gsell, Dennis Özkundakci, and Tom Shatwell for advice in methodology and helpful discussion during the development of this study. Comments by one anonymous reviewer improved the manuscript substantially.

Funding

Basic funding for sampling and sample processing was provided by the IGB long-term ecological research program. This work received aditional support from the MANTEL (H2020-MSCA-ITN-2016) and the LimnoScenES projects within the Belmont Forum–BiodivERsA International Joint Call on “Scenarios of Biodiversity and Ecosystem Services”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Torsten Seltmann.

Electronic supplementary material

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seltmann, C.T., Kraemer, B.M. & Adrian, R. The importance of nonrandom and random trait patterns in phytoplankton communities: a case study from Lake Müggelsee, Germany. Theor Ecol 12, 501–512 (2019). https://doi.org/10.1007/s12080-019-0424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-019-0424-5

Keywords

Navigation