Skip to main content

Advertisement

Log in

Innovations in Technology and Science R&D for ITER

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. Rapid progress is being made in project construction, and the facility is now taking shape at St-Paul-lez-Durance in southern France. In the course of designing and manufacturing of the systems making up the ITER tokamak and the ITER facility, extensive ground-breaking R&D has been implemented by the ITER partners across a wide range of technology and science areas which underpin the achievement of the project’s engineering and fusion plasma performance requirements. Significant developments have been made in the production of high performance Nb3Sn superconducting strand and in magnet technologies supporting the construction of the largest superconducting magnets produced to date. High heat flux plasma facing components have been fabricated which are capable of sustaining quasi-stationary heat loads of up to 10 MW m−2 and transient loads of up to 20 MW m−2. Fusion nuclear technologies such as remote maintenance and tritium breeding have received specific emphasis within the ITER R&D program, since extensive deployment of these technologies is foreseen. Diagnostic systems face particular challenges in the ITER environment, and wide-ranging R&D activities have been implemented to develop novel solutions to ensure an adequate measurement capability in ITER DT operation. Routine and reliable operation in ITER will require a highly effective capability for the detection, avoidance and mitigation of disruptions, and significant science and technology R&D is underway to establish this capability. The overall integration of the control requirements for the ITER plasma and facility, in particular during burning plasma operation, has presented new challenges for fusion control systems, including the need for robust safety and hardware (investment) protection. These challenges are being addressed via the implementation of the most extensive and ambitious control system to date. The paper introduces the ITER project and its major goals in relation to the development of fusion energy and provides an overview of key innovations which have been made in these areas of fusion technology and science in support of ITER construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Photograph courtesy of K. Hamada, Japan Atomic Energy Research Institute

Fig. 16
Fig. 17
Fig. 18
Fig. 19

Courtesy of China and EU Domestic Agencies

Fig. 20

Courtesy of China and Korea Domestic Agencies

Fig. 21

Courtesy of Russia Domestic Agency

Fig. 22
Fig. 23

Courtesy of Japan, EU and Russia Domestic Agencies

Fig. 24

Courtesy of EU Domestic Agency

Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

Notes

  1. IUA  = ITER Unit of Account: monetary accounting unit used within the ITER project to provide equivalence of costs across the partners; 1 IUA = $1000 in 1989 values.

  2. Shapal-M is a machinable sintered ceramic composite of AlN and BN that offers both high mechanical strength and high thermal conductivity. More properties about this material can be found at http://www.goodfellow.com/larger-quantities/ceramics/shapal-m/.

  3. The layout of the DMS described here reflects the current ITER baseline. However, as discussed in the “Strategy for future R&D on DMS Developmen” section, an extensive R&D program is being implemented to enhance ITER’s capability for disruption mitigation. This is likely to result, inter alia, in further evolution (i.e. expansion) of the DMS layout within the ITER tokamak.

References

  1. T. Akiyama et al., Dispersion interferometer using modulation amplitudes on LHD. Rev. Sci. Instrum. 85, 11D301 (2014)

    Google Scholar 

  2. T. Akiyama et al., A heterodyne dispersion interferometer for wide-bandwidth density measurements on DIII-D. Rev. Sci. Instrum. 89, 10B105 (2018)

    Google Scholar 

  3. N. Ayai et al., Development of Nb3Al superconductors for ITER. IEEE Trans. Appl. Supercond. 9, 2688 (1999)

    ADS  Google Scholar 

  4. R. Aymar, P. Barabaschi, Y. Shimomura, The ITER design. Plasma Phys. Control. Fusion 44, 519 (2002)

    ADS  Google Scholar 

  5. D. Babineau et al., Review of the ITER fuel cycle, paper ITR/2-2, in Proceedings of 23rd IAEA Fusion Energy Conference, Daejeon (2010)

  6. P.A. Bagryansky et al., Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments. Rev. Sci. Instrum. 77, 053501 (2006)

    ADS  Google Scholar 

  7. E. Barrera et al., Implementation of ITER fast plant interlock system using FPGAs with compactRIO. IEEE Trans. Nucl. Sci. 65, 796 (2018)

    ADS  Google Scholar 

  8. P. Bauer et al., R&D towards HTS current leads for ITER. IEEE Trans. Appl. Supercond. 19, 1500 (2009)

    ADS  Google Scholar 

  9. P. Bauer et al., Test results of 52/68 kA trial HTS current leads for ITER. IEEE Trans. Appl. Supercond. 20, 1718 (2010)

    ADS  Google Scholar 

  10. P. Bauer et al., Development of HTS current leads for the ITER project. ITER technical report ITR-18-001, ITER Organization, St-Paul-lez-Durance (2018)

  11. L.R. Baylor et al., Reduction of ELM intensity using high repetition rate pellet injection in Tokamak H-mode plasmas. Phys. Rev. Lett. 110, 245001 (2013)

    ADS  Google Scholar 

  12. L. Begrambekov et al., Development of quality tungsten coating on ceramics as a microwave shield for ITER high-frequency magnetic sensor. submitted to Fusion Sci. Technol.  (to be published)

  13. D. Bessette, Sensitivity of Nb3Sn ITER conductor design to selected parameters. IEEE Trans. Appl. Supercond. 13, 1433 (2003)

    ADS  Google Scholar 

  14. D. Bessette et al., Test results from the PF conductor insert coil and implications for the ITER PF system. IEEE Trans. Appl. Supercond. 19, 1525 (2009)

    ADS  Google Scholar 

  15. B. Bigot, Progress in ITER construction, manufacturing and R&D, paper OV/1-2, in Proceedings of 26th IAEA Fusion Energy Conference, Kyoto (2016)

  16. D.J. Campbell et al., Challenges in burning plasma physics: the ITER research plan, paper ITR/P1-18, in Proceedings of 24 th IAEA Fusion Energy Conference, San Diego (2012)

  17. S. Cho et al., Design and R&D progress of Korean HCCR TBM. Fusion Eng. Des. 89, 1137 (2014)

    Google Scholar 

  18. S.K. Combs et al., Alternative techniques for injecting massive quantities of gas for plasma-disruption mitigation. IEEE Trans. Plasma Sci. 38, 400 (2010)

    ADS  Google Scholar 

  19. S.K. Combs et al., Solidification and acceleration of large cryogenic pellets suitable for plasma disruption mitigation. IEEE Trans. Plasma Sci. 44, 1506 (2016)

    ADS  Google Scholar 

  20. S.K. Combs, L.R. Baylor, Pellet-injector technology - brief history and key developments in the last 25 years. Fusion Sci. Technol. 73, 493 (2018)

    Google Scholar 

  21. C. Damiani et al., Overview of the ITER remote maintenance design and of the development activities in Europe. Fusion Eng. Des. 136, 1117 (2018)

    Google Scholar 

  22. J.-J. Dang et al., Study of capsule position monitoring methods for ITER neutron activation system. Fusion Eng. Des. 89, 2268 (2014)

    Google Scholar 

  23. M. Darweschsad et al., Development and test of the poloidal field prototype coil POLO at Forschungszentrum Karlsruhe. Fusion Eng. Des. 36, 227 (1997)

    Google Scholar 

  24. A. Devred et al., Challenges and status of ITER conductor production. Supercond. Sci. Technol. 27, 044001 (2014)

    ADS  Google Scholar 

  25. F. Di Maio et al., CODAC core system for the ITER plant system I&C, in Proceedings of 27th IEEE Symposium on Fusion Energy (SOFE 2017), Shanghai (2017)

  26. T.E. Evans et al., RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities. Nucl. Fusion 48, 024002 (2008)

    ADS  Google Scholar 

  27. K. Feng et al., Current progress of Chinese HCCB TBM program. Fusion Eng. Des. 109–111, 729 (2016)

    Google Scholar 

  28. M.E. Fenstermacher et al., Effect of island overlap on edge localized mode suppression by resonant magnetic perturbations in DIII-D. Phys. Plasmas 15, 056122 (2008)

    ADS  Google Scholar 

  29. J.L. Fernández-Hernando et al., The ITER interlock system. Fusion Eng. Des. 129, 104 (2018)

    Google Scholar 

  30. W.H. Fietz et al., Prospects of high temperature superconductors for fusion magnets and power applications. Fusion Eng. Des. 88, 440 (2013)

    Google Scholar 

  31. L.M. Giancarli et al., Overview of the TBM program. Fusion Eng. Des. 87, 395 (2012)

    Google Scholar 

  32. L.M. Giancarli et al., Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations. Fusion Eng. Des. 89, 2088 (2014)

    Google Scholar 

  33. L.M. Giancarli et al., Progress and challenges of the ITER TBM program from the IO perspective. Fusion Eng. Des. 109–111, 1491 (2016)

    Google Scholar 

  34. L.M. Giancarli et al., ITER TBM Program and associated system engineering. Fusion Eng. Des. 136, 815 (2018)

    Google Scholar 

  35. L. Giudicotti, R. Pasqualotto, On the calibration of polarimetric Thomson scattering by Raman polarimetry. Plasma Phys. Control. Fusion 57, 125015 (2015)

    ADS  Google Scholar 

  36. M. Glugla et al., Overview of the ITER D-T fuel cycle systems, in Proceedings of 10th International Symposium on Fusion Nuclear Technology (ISFNT-10), Portland (2011)

  37. R. Heller et al., Experimental results of a 70 kA high temperature superconductor current lead demonstrator for the ITER magnet system. IEEE Trans. Appl. Supercond. 15, 1496 (2005)

    ADS  Google Scholar 

  38. A.M. Hernández Almería et al., Design, manufacture, qualification and installation of the nuclear safety control system of ITER, in Proceedings of Spanish Nuclear Society 42nd Annual Meeting, Santander (2016)

  39. R.J. Hawryluk et al., Principal physics developments evaluated in the ITER design review. Nucl. Fusion 49, 065012 (2009)

    ADS  Google Scholar 

  40. T. Hirai et al., ITER divertor materials and manufacturing challenges. Fusion Eng. Des. 125, 250 (2017)

    Google Scholar 

  41. T. Hirai et al., Design optimization of the ITER tungsten divertor vertical targets. Fusion Eng. Des. 127, 66 (2018)

    Google Scholar 

  42. E.M. Hollmann et al., Status of research towards the ITER disruption mitigation system. Phys. Plasmas 22, 021802 (2015)

    ADS  Google Scholar 

  43. D. Hu et al., 3D non-linear MHD simulation of the MHD response and density increase as a result of Shattered Pellet Injection. Nucl. Fusion 58, 126025 (2018)

    ADS  Google Scholar 

  44. K. Humer et al., Radiation effects on the mechanical properties of insulators for fusion magnets. Fusion Eng. Des. 81, 2433 (2006)

    Google Scholar 

  45. K. Humer et al., Innovative insulation systems for superconducting fusion magnets. Supercond. Sci. Technol. 19, S96 (2006)

    ADS  Google Scholar 

  46. D.A. Humphreys et al., Experimental vertical stability studies for ITER performance and design guidance, paper IT/2-4b, in Proceedings of 22nd IAEA Fusion Energy Conference, Geneva (2008)

  47. IEC 61508-1:2010, Functional safety of electrical/electronic/programmable electronic safety-related systems, ISBN 978-2-88910-524-3 International Electrotechnical Commission (2010)

  48. L.C. Ingesson, Fusion for Energy, private communication (2018)

  49. INTOR Group, International tokamak reactor—phase I (executive summary of the IAEA workshop, 1981). Nucl. Fusion 22, 135 (1982)

    Google Scholar 

  50. INTOR Group, International tokamak reactor—phase two A, part III executive summary of the IAEA workshop, mid-1985 to 1987. Nucl. Fusion 28, 711 (1988)

    Google Scholar 

  51. M. Ishikawa et al., Development of the microfission chamber for fusion power diagnostics on ITER. J. Plasma Fusion Res. 8, 334 (2009)

    Google Scholar 

  52. International Thermonuclear Engineering Reactor (ITER), ITER Conceptual Design Report, ITER documentation series no. 18, IAEA, Vienna (1991)

  53. International Thermonuclear Engineering Reactor (ITER), Final Design Report, Cost Review and Safety Analysis, ITER EDA documentation series no. 14, IAEA, Vienna (1998)

  54. ITER, Summary of the ITER Final Design Report, ITER EDA documentation series no. 22, IAEA, Vienna (2001)

  55. ITER Technical Basis, ITER EDA documentation series no. 24, IAEA, Vienna (2002)

  56. ITER Physics Expert Groups et al., The ITER physics basis. Nucl. Fusion 39, 2137 (1999)

    ADS  Google Scholar 

  57. ITPA Topical Groups et al., Progress in the ITER physics basis. Nucl. Fusion 47, S1 (2007)

    Google Scholar 

  58. Y. Kawamura et al., Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO. Fusion Eng. Des. 109–111, 1637 (2016)

    Google Scholar 

  59. S. Khomiakov et al., ITER blanket module connectors. Design, analysis and testing for procurement arrangement. Fusion Eng. Des. A 109–111, 261 (2016)

    Google Scholar 

  60. M. Kikuchi, M. Azumi, Steady-state tokamak research: core physics. Rev. Mod. Phys. 84, 1807 (2012)

    ADS  Google Scholar 

  61. S.-W. Kim et al., Verification of dimensional stability on ITER blanket shield block after stress relieving. Fusion Eng. Des. A 109–111, 878 (2016)

    Google Scholar 

  62. B.-Y. Kim et al., Design and manufacturing feasibility of ITER TBM Frame and Dummy TBMs. Fusion Eng. Des. 109–111, 996 (2016)

    Google Scholar 

  63. J. Knaster et al., Design issues of the pre-compression rings of ITER, in Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference—ICMC, Vol. 56, Tucson, Arizona, July 2009, AIP Conference Proceedings, vol. 1219, p. 145 (2010)

  64. J. Knauer et al., A new dispersion interferometer for the Stellarator Wendelstein 7-X, in EUROFUSION WPS1-PR(16) 16154 (2015)

  65. M. Kocan et al., Steady-state magnetic sensors for ITER and beyond: development and final design. Rev. Sci. Instrum. 89, 10J119 (2018)

    Google Scholar 

  66. R. König et al., Diagnostic developments for quasicontinuous operation of the Wendelstein 7-X stellarator. Rev. Sci. Instrum. 79, 10F337 (2008)

    Google Scholar 

  67. R.J. La Haye, A. Isayama, M. Marascheck, Prospects for stabilization of neoclassical tearing modes by electron cyclotron current drive in ITER. Nucl. Fusion 49, 045005 (2009)

    ADS  Google Scholar 

  68. M.J. Lanctot et al., A path to stable low-torque plasma operation in ITER with test blanket modules. Nucl. Fusion 57, 036004 (2017)

    ADS  Google Scholar 

  69. P.T. Lang et al., ELM frequency control by continuous small pellet injection in ASDEX Upgrade. Nucl. Fusion 43, 1110 (2003)

    ADS  Google Scholar 

  70. S.A.E. Langeslag et al., Extensive characterisation of advanced manufacturing solutions for the ITER central solenoid pre-compression system. Fusion Eng. Des. 98–99, 2015 (2015)

    Google Scholar 

  71. G.S. Lee et al., Design and construction of the KSTAR tokamak. Nucl. Fusion 41, 1515 (2001)

    ADS  Google Scholar 

  72. M. Lehnen et al., Impact and mitigation of disruptions with the ITER-like wall in JET. Nucl. Fusion 53, 093007 (2013)

    ADS  Google Scholar 

  73. M. Lehnen et al., Disruptions in ITER and strategies for their control and mitigation. J. Nucl. Mater. 463, 39 (2015)

    ADS  Google Scholar 

  74. M. Lehnen, S. Maruyama, Executive report of the Disruption Mitigation Workshop, ITER technical report ITR-18-002, ITER Organization, St-Paul-lez-Durance (2018)

  75. F. Leipold et al., Cleaning of first mirrors in ITER by means of radio frequency discharges. Rev. Sci. Instrum. 87, 11D439 (2016)

    Google Scholar 

  76. A. Loarte et al., Progress on the application of ELM control schemes to ITER scenarios from the non-active phase to DT operation. Nucl. Fusion 54, 033007 (2014)

    ADS  Google Scholar 

  77. P. Lorenzetto et al., EU contribution to the procurement of the ITER blanket first wall. Fusion Eng. Des. A 109–111, 661 (2016)

    Google Scholar 

  78. T.C. Luce et al., Development of advanced inductive scenarios for ITER. Nucl. Fusion 54, 013015 (2014)

    ADS  Google Scholar 

  79. D. Marocco et al., The ITER radial neutron camera detection system, in AIP Conference Proceedings, vol. 988, p. 291 (2008)

  80. G.F. Matthews et al., Plasma operation with an all metal first-wall: comparison of an ITER-like wall with a carbon wall in JET. J. Nucl. Mater. 438, S2 (2013)

    Google Scholar 

  81. I.V. Mazul et al., Technological challenges at ITER plasma facing components production in Russia. Fusion Eng. Des. A 109–111, 1028 (2016)

    Google Scholar 

  82. H. Meister et al., Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane. Rev. Sci. Instrum. 81, 10E132 (2010)

    Google Scholar 

  83. H. Meister et al., Reliability issues for a bolometer detector for ITER at high operating temperatures. Rev. Sci. Instrum. 83, 10D724 (2012)

    Google Scholar 

  84. M. Merola et al., Engineering challenges and development of the ITER Blanket System and Divertor. Fusion Eng. Des. 96–97, 34 (2015)

    Google Scholar 

  85. V.V. Mirnov, D.J. Den Hartog, Polarization of incoherent Thomson scattering for electron temperature measurement. Plasma Phys. Control. Fusion 59, 063001 (2017)

    ADS  Google Scholar 

  86. N. Mitchell, L. Bottura, Superconductors for the NET coils. Fusion Eng. Des. 15, 85 (1991)

    Google Scholar 

  87. N. Mitchell et al., Conductor design and optimisation for ITER. IEEE Trans. Magn. 32, 2997 (1996)

    ADS  Google Scholar 

  88. N. Mitchell et al., Conductor development for the ITER magnets, in Proceedings of 15th International Conference on Magnet Technology, Beijing, 1997 (Science Press, Beijing, 1997), p. 347

  89. N. Mitchell et al., Avoidance of stress accelerated grain boundary oxidation (SAGBO) in Incoloy 908 used as a jacket material for Nb3Sn conductors, in Proceedings of 15th International Conference on Magnet Technology, Beijing, 1997 (Science Press, Beijing, 1997), p. 1163

  90. N. Mitchell, Summary, assessment and implications of the ITER model coil test results. Fusion Eng. Des. 66–68, 971 (2003)

    Google Scholar 

  91. N. Mitchell, Stability criteria for cable-in-conduit superconducting cables for steady or slow pulse operation. IEEE Trans. Appl. Supercond. 14, 1350 (2004)

    ADS  Google Scholar 

  92. M.M. Morra et al., Incoloy 908, a new low coefficient of thermal expansion sheathing alloy for use in ICCS magnets. Adv. Cryog. Eng. 34, 157 (1988)

    Google Scholar 

  93. H. Nakajima, K. Yoshida, S. Shimamoto, Development of new cryogenic steels for the superconducting magnets of the fusion experimental reactor. ISIJ Int. 30, 567 (1990)

    Google Scholar 

  94. C. Nardi, L. Bettinali, A. Pizzuto, Fibreglass unidirectional composite to be used for ITER pre-compression rings. Fusion Eng. Des. 75–79, 249 (2005)

    Google Scholar 

  95. R. Neu et al., Overview on plasma operation with a full tungsten wall in ASDEX Upgrade. J. Nucl. Mater. 438, S34 (2013)

    Google Scholar 

  96. Y. Nishijima et al., Development of manufacturing technologies for the ITER toroidal field coil: effort for precise manufacturing, in ASME 2017 Pressure Vessels and Piping Conference, Vol. 6A: Materials and Fabrication, Waikoloa, Hawaii, July 2017, paper PVP2017-65599 (2017)

  97. NET, The NET Team, NET Predesign Report. Fusion Eng. Design 21, 3 (1993)

    Google Scholar 

  98. NET, The NET Team, NET Predesign Report, 111.2. The NET device—magnet system. Fusion Eng. Des. 21, 107 (1993)

    Google Scholar 

  99. S.G. Oh et al., Passive mitigation of impurity deposition on first mirrors using baffled duct; a case study at KSTAR, in ITPA Diagnostics Topical Group, 33rd Meeting, 16–19 October 2017, St-Paul-lez-Durance (2017)

  100. S.D. Pinches et al., Energetic ions in ITER plasmas. Phys. Plasmas 22, 021807 (2015)

    ADS  Google Scholar 

  101. R.A. Pitts et al., A full tungsten divertor for ITER: physics issues and design status. J. Nucl. Mater. 438, S48 (2013)

    Google Scholar 

  102. A. Portone et al., ITER plasma vertical stabilization, paper IT/2-4a, in Proceedings of 22nd IAEA Fusion Energy Conference, Geneva (2008)

  103. M. Prokopas et al., ITER Control System Model: a full-scale simulation platform for the CODAC infrastructure. Fusion Eng. Des. 128, 86 (2018)

    Google Scholar 

  104. R. Prokopec et al., Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems. Fusion Eng. Des. 84, 1544 (2009)

    Google Scholar 

  105. R. Prokopec et al., Radiation resistant insulation systems for the ITER toroidal field coils. Energy Environ. Eng. 3(3), 50 (2015)

    Google Scholar 

  106. B. Puccio et al., The beam interlock system for the LHC, CERN engineering specification LHC-CIB-ES-0001-00-10 (2005)

  107. A.R. Raffray et al., The ITER blanket system design challenge. Nucl. Fusion 54, 033004 (2014)

    ADS  Google Scholar 

  108. H. Rajainmaki et al., The ITER pre-compression rings—a first in cryogenic composite technology, in Advances in Cryogenic Engineering: Transactions of the International Cryogenic Materials Conference—ICMC, Vol. 60, Anchorage, Alaska, June 2013, AIP Conference Proceedings, vol. 1574, p. 92 (2014)

  109. E. Rajendra Kumar, K.N. Vyas, T. Jayakumar, Overview of LLCB TBM design and R&D activities in India. Fusion Eng. Des. 109–111, 1522 (2016)

    Google Scholar 

  110. R. Reichle et al., Radiation hardness test of mica bolometers for ITER in JMTR, in Proceedings of 28th European Conference on Controlled Fusion and Plasma Physics, Funchal, 2001, Europhysics Conference Abstracts Vol. 25A 1293, EPS, Mulhouse (2001)

  111. I. Ricapito et al., Current design of the European TBM systems and implications on DEMO breeding blanket. Fusion Eng. Des. 109–111, 1326 (2016)

    Google Scholar 

  112. A.V. Rogov, YuV Kapustin, A.G. Alekseev, Application of the penning discharge for cleaning mirrors in optical diagnostics of the ITER. Instrum. Exp. Tech. 58, 161 (2015)

    Google Scholar 

  113. M. Rubel et al., Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak. J. Nucl. Mater. 438, S1204 (2013)

    Google Scholar 

  114. J.-F. Salavy et al., Must we use ferritic steel in TBM? Fusion Eng. Des. 85, 1896 (2010)

    Google Scholar 

  115. R. Scannell et al., A 130 point Nd:YAG Thomson scattering diagnostic on MAST. Rev. Sci. Instrum. 81, 10D520 (2010)

    Google Scholar 

  116. Y. Shimomura, for the ITER Central Team and Home Teams, ITER technology R&D. Fusion Eng. Des. 55, 97 (2001)

    Google Scholar 

  117. D. Shiraki et al., Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D. Phys. Plasmas 23, 062516 (2016)

    Google Scholar 

  118. A.C.C. Sips et al., Progress in preparing scenarios for the operation of the International Thermonuclear Experimental Reactor. Phys. Plasmas 22, 021804 (2015)

    ADS  Google Scholar 

  119. D.B. Smathers et al., Production of tin core modified jelly roll cable for the MIT Multipurpose Coil. IEEE Trans. Magn. 24, 1131 (1988)

    ADS  Google Scholar 

  120. J.A. Snipes et al., Physics of the conceptual design of the ITER plasma control system. Fusion Eng. Des. 89, 507 (2014)

    Google Scholar 

  121. M.M. Steeves et al., The US-DPC, a poloidal coil test insert for the Japanese Demonstration Poloidal Coil Test Facility. IEEE Trans. Magn. 24, 1307 (1988)

    ADS  Google Scholar 

  122. A. Suarez et al., Neutronic analysis for bolometers in ITER. Fusion Eng. Des. 88, 1395 (2013)

    Google Scholar 

  123. R. Toschi et al., Next European Torus objectives, general requirements, and parameter choices. Fusion Technol. 14, 19 (1988), including: (1) M. Chazalon et al., Next European Torus general description and layout. Fusion Technol. 14, 49 (1988); (2) E. Salpietro et al., Next European Torus basic machine. Fusion Technol. 14, 58 (1988); (3) E. Salpietro et al., Next European Torus operation cycle. Fusion Technol. 14, 145 (1988)

  124. J.G. van der Laan et al., Radwaste management aspects of the test blanket systems in ITER. Fusion Eng. Des. 109–111, 222 (2016)

    Google Scholar 

  125. M. van Zeeland et al., Tests of a full-scale ITER toroidal interferometer and polarimeter (TIP) prototype on the DIII-D tokamak. Rev. Sci. Intrum. 89, 10B102 (2018)

    Google Scholar 

  126. A. Wallander et al., ITER instrumentation and control—status and plans. Fusion Eng. Des. 85, 529 (2010)

    Google Scholar 

  127. A. Wallander et al., Baseline architecture of ITER control system. IEEE Trans. Nucl. Sci. 58, 1433 (2011)

    ADS  Google Scholar 

  128. C. Watts et al., Design development of ITER divertor Langmuir probes, in HTPD2018 22nd Topical Conference on High Temperature Plasma Diagnostics, San Diego, California, April 2018, paper 8.22 (2018)

  129. P.D. Weng et al., The engineering design of the HT-7U tokamak. Fusion Eng. Des. 58–59, 827 (2001)

    Google Scholar 

  130. A. Widdowson et al., Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall. J. Nucl. Mater. 390–391, 988 (2009)

    Google Scholar 

  131. Y. Yamada et al., Development of Nb3Al superconductors for International Thermonuclear Experimental Reactor (ITER). Cryogenics 39, 115 (1999)

    ADS  Google Scholar 

  132. M. Zmitko et al., The European ITER Test Blanket Modules: EUROFER97 material and TBM’s fabrication technologies development and qualification. Fusion Eng. Des. 124, 767 (2017)

    Google Scholar 

  133. H. Zohm et al., Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX Upgrade. Nucl. Fusion 39, 577 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

This report represents the work of the staff of the ITER Organization, the Domestic Agencies and many collaborators in the Members’ fusion communities. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to David J. Campbell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, D.J., Akiyama, T., Barnsley, R. et al. Innovations in Technology and Science R&D for ITER. J Fusion Energ 38, 11–71 (2019). https://doi.org/10.1007/s10894-018-0187-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0187-9

Keywords

Navigation