Skip to main content
Log in

The problem of optical isomerism and the interpretation of quantum mechanics

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

When young Kant meditated upon the distinction between his right and left hands, he could not foresee that the problem of incongruent counterparts would revive in the twentieth century under a new form. In the early days of quantum chemistry, Friedrich Hund developed the so-called Hund paradox that arises from the supposed inability of quantum mechanics to account for the difference between enantiomers. In this paper, the paradox is expressed as a case of quantum measurement, stressing that decoherence does not offer a way out of the problem. The main purpose is to argue for the need to adopt a clear interpretation of quantum mechanics in order to solve the paradox. In particular, I claim that the Modal-Hamiltonian Interpretation, which conceives measurement as a breaking-symmetry process, supplies the tools required to explain the dextro-rotation or levo-rotation properties of optical isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, S.: Why decoherence has not solved the measurement problem: A response to P. W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003)

    Article  Google Scholar 

  • Albert, D., Loewer, B.: Wanted dead or alive: two attempts to solve the Schrödinger’s paradox. In: Fine, A., Forbes, M., Wessels, L. (eds.), Proceedings of the PSA 1990, vol. 1. Philosophy of Science Association, East Lansing (1990)

  • Albert, D., Loewer, B.: Some alleged solutions to the measurement problem. Synthese 88, 87–98 (1991)

    Article  Google Scholar 

  • Albert, D., Loewer, B.: Non-ideal measurements. Found. Phys. Lett. 6, 297–305 (1993)

    Article  Google Scholar 

  • Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)

    Article  Google Scholar 

  • Ardenghi, J.S., Castagnino, M., Lombardi, O.: Modal-Hamiltonian interpretation of quantum mechanics and Casimir operators: the road to quantum field theory. Int. J. Theor. Phys. 50, 774–791 (2011)

    Article  Google Scholar 

  • Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: perspectives and foundational problems in philosophy of science. Springer, Dordrecht (2013)

    Google Scholar 

  • Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2010)

    Google Scholar 

  • Bacciagaluppi, G.: A Kochen-Specker theorem in the modal interpretation of quantum mechanics. Int. J. Theor. Phys. 34, 1205–1216 (1995)

    Article  Google Scholar 

  • Bacciagaluppi, G., Dickson, M.: Dynamics for modal interpretations. Found. Phys. 29, 1165–1201 (1999)

    Article  Google Scholar 

  • Bacciagaluppi, G., Hemmo, M.: Modal interpretations, decoherence and measurements. Stud. Hist. Philos. Mod. Phys. 27, 239–277 (1996)

    Article  Google Scholar 

  • Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Bene, G., Dieks, D.: A perspectival version of the modal interpretation of quantum mechanics and the origin of macroscopic behavior. Found. Phys. 32, 645–671 (2002)

    Article  Google Scholar 

  • Berlin, Y., Alexander, B., Vitalii, G.: The Hund paradox and stabilization of molecular chiral states. Z. Phys. D 37, 333–339 (1996)

    Article  Google Scholar 

  • Brown, H., Suarez, M., Bacciagaluppi, G.: Are ‘sharp values’ of observables always objective elements of reality? In: Dieks, D., Vermaas, P.E. (eds.) The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  • Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Crull, E.: Less interpretation and more decoherence in quantum gravity and inflationary cosmology. Found. Phys. 45, 1019–1045 (2015)

    Article  Google Scholar 

  • Dieks, D.: The formalism of quantum theory: an objective description of reality? Ann. Phys. 7, 174–190 (1988)

    Article  Google Scholar 

  • Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)

    Article  Google Scholar 

  • Elby, A.: Why ‘modal’ interpretations of quantum mechanics don’t solve the measurement problem. Found. Phys. Lett. 6, 5–19 (1993)

    Article  Google Scholar 

  • Fortin, S., Lombardi, O., Martínez González, J.C.: Isomerism and decoherence. Found. Chem. 18, 225–240 (2016)

    Article  Google Scholar 

  • Fortin, S., Lombardi, O., Martínez González, J. C.: A new application of the modal-Hamiltonian interpretation of quantum mechanics: the problem of optical isomerism. Stud. Hist. Philos. Mod. Phys. B. 62, 123–135 (2018)

    Article  Google Scholar 

  • Gavroglu, K., Simões, A.: Neither Physics nor Chemistry: A History of Quantum Chemistry. MIT Press, Cambridge (2012)

    Google Scholar 

  • Harris, R., Stodolsky, L.: Time dependence of optical activity. J. Chem. Phys. 74, 2145–2155 (1981)

    Article  Google Scholar 

  • Heisenberg, W.: The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago (1930)

    Google Scholar 

  • Hendry, R.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)

    Article  Google Scholar 

  • Hendry, R.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)

    Article  Google Scholar 

  • Hendry, R.: Ontological reduction and molecular structure. Stud. Hist. Philos. Mod. Phys. 41, 183–191 (2010)

    Article  Google Scholar 

  • Hendry, R.: The chemical bond. In: Woody, A., Hendry, R., Needham, P. (eds.) Handbook of the Philosophy of Science Volume 6: Philosophy of Chemistry. Elsevier, Amsterdam (2012)

    Google Scholar 

  • Hendry, R.: The Metaphysics of Chemistry. Oxford University Press, Oxford (2018, forthcoming)

  • Hettema, H.: Explanation and theory foundation in quantum chemistry. Found. Chem. 11, 145–174 (2009)

    Article  Google Scholar 

  • Hettema, H.: Reducing Chemistry to Physics. Limits, Models, Consecuences. University of Groningen, Groningen (2012)

    Google Scholar 

  • Hund, F.: Zur Deutung der Molekelspektren. III. Z. Phys. 43, 805–826 (1927)

    Article  Google Scholar 

  • Joos, E.: Decoherence through interaction with the environment. In: Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O. (eds.) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Heidelberg (1996)

    Google Scholar 

  • Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics 1985. World Scientific, Singapore (1985)

    Google Scholar 

  • Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    Google Scholar 

  • Labarca, M., Lombardi, O.: Why orbitals do not exist? Found. Chem. 12, 149–157 (2010)

    Article  Google Scholar 

  • Leach, M.: Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form. Found. Chem. 15, 13–29 (2013)

    Article  Google Scholar 

  • Llored, J.: Mereology and quantum chemistry: the approximation of molecular orbital. Found. Chem. 12, 203–221 (2010)

    Article  Google Scholar 

  • Lombardi, O.: Linking chemistry with physics: arguments and counterarguments. Found. Chem. 16, 181–192 (2014)

    Article  Google Scholar 

  • Lombardi, O., Castagnino, M.: A Modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  Google Scholar 

  • Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)

    Article  Google Scholar 

  • Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2017). https://plato.stanford.edu/archives/spr2017/entries/qm-modal/

  • Lombardi, O., Castagnino, M., Ardenghi, J.S.: The Modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)

    Article  Google Scholar 

  • Lombardi, O., Fortin, S., López, C.: Measurement, interpretation and information. Entropy 17, 7310–7330 (2015)

    Article  Google Scholar 

  • Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)

    Book  Google Scholar 

  • Quack, M., Stohner, J.: Parity violation in chiral molecules. Chimia 59, 530–538 (2005)

    Article  Google Scholar 

  • Ruetsche, L.: Measurement error and the Albert-Loewer problem. Found. Phys. Lett. 8, 327–344 (1995)

    Article  Google Scholar 

  • Ruthenberg, K., Martínez González, J.C.: Electronegativity and its multiple faces: persistence and measurement. Found. Chem. 19, 1–15 (2017)

    Article  Google Scholar 

  • Scerri, E.: Editorial 37. Found. Chem. 13, 1–7 (2011)

    Article  Google Scholar 

  • Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  • Shao, J., Hänggi, P.: Control of molecular chirality. J. Chem. Phys. 107, 9935–9941 (1997)

    Article  Google Scholar 

  • Sutcliffe, B., Woolley, G.: A comment on editorial 37. Found. Chem. 13, 93–95 (2011)

    Article  Google Scholar 

  • Sutcliffe, B., Woolley, G.: Atoms and molecules in classical chemistry and quantum mechanics. In: Woody, A., Hendry, R., Needham, P. (eds.) Handbook of the Philosophy of Science Volume 6: Philosophy of Chemistry. Elsevier, Amsterdam (2012)

    Google Scholar 

  • Van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain. University of Pittsburgh Press, Pittsburgh (1972)

    Google Scholar 

  • Van Fraassen, B.C.: The Einstein-Podolsky-Rosen paradox. Synthese 29, 291–309 (1974)

    Article  Google Scholar 

  • Vassallo, A., Esfeld, M.: On the importance of interpretation in quantum pysics: a reply to Elise Crull. Found. Phys. 45, 1533–1536 (2015)

    Article  Google Scholar 

  • Vemulapalli, K.: Theories of the chemical bond and its true nature. Found. Chem. 10, 167–176 (2008)

    Article  Google Scholar 

  • Vermaas, P.: A no-go theorem for joint property ascriptions in modal interpretations of quantum mechanics. Phys. Rev. Lett. 78, 2033–2037 (1997)

    Article  Google Scholar 

  • Vermaas, P., Dieks, D.: The modal interpretation of quantum mechanics and its generalization to density operators. Found. Phys. 25, 145–158 (1995)

    Article  Google Scholar 

  • Wolley, G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)

    Article  Google Scholar 

  • Wolley, G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Camilo Martínez González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez González, J.C. The problem of optical isomerism and the interpretation of quantum mechanics. Found Chem 21, 97–107 (2019). https://doi.org/10.1007/s10698-018-09330-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-018-09330-3

Keywords

Navigation