Skip to main content
Log in

Thermally Self-Healable Titanium Dioxide/Polyurethane Nanocomposites with Recoverable Mechanical and Dielectric Properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Dielectric materials with self-healing property after the occurrence of detrimental events such as tearing or scratch are highly desired, which guarantees reliability and lifetime of the electric and electronic systems. Here, a self-healing covalently bonded titanium dioxide/polyurethane (TiO2/PU) nanocomposite with enhanced dielectric constant was prepared by in-situ polymerization based upon Diels-Alder reaction. The PU prepolymer was prepared from TiO2, poly(tetramethylene glycol) and 4,4-diphenylmethane diisocyanate. Then the linking between the prepolymer and Diels-Alder adducts of bifunctional maleimide blocked by furfuryl alcohol was carried out. The in-situ polymerization method allows the TiO2 filler, the PU polymer matrix, and the DA healing portion to be tightly connected, resulting in a stable nanocomposite system. Due to the reversibility of covalent bonds, the TiO2/PU nanocomposites exhibited thermal self-healing properties after being cut. The dielectric constant and loss, mechanical properties can be effectively restored to their original state after damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Placette, A. K. Himes, and C. J. Schwartz, Biotribology, 17, 40 (2019).

    Article  Google Scholar 

  2. O. Atalay, A. Atalay, J. Gafford, and C. Walsh, Adv. Mater. Technol., 3, 1700237 (2018).

    Article  CAS  Google Scholar 

  3. W. Huang, K. Besar, Y. Zhang, S. Yang, G. Wiedman, Y. Liu, W. Guo, J. Song, K. Hemker, and K. Hristova, Adv. Funct. Mater., 25, 3745 (2015).

    Article  CAS  Google Scholar 

  4. S. Ding, S. Yu, X. Zhu, S. Xie, R. Sun, W.-H. Liao, and C.-P. Wong, Appl. Phys. Lett., 111, 153902 (2017).

    Article  CAS  Google Scholar 

  5. X. Huang, B. Sun, Y. Zhu, S. Li, and P. Jiang, Prog. Mater. Sci., (2018).

  6. T. V. Prateek and R. Gupta, Chem. Rev, 116, 4260 (2016).

    Article  CAS  Google Scholar 

  7. Y. Wu, Z. Wang, X. Shen, X. Liu, N. M. Han, Q. Zheng, Y.-W. Mai, and J.-K. Kim, ACS Appl. Mater. Interfaces, 10, 26641 (2018).

    Article  CAS  Google Scholar 

  8. S. Luo, J. Yu, S. Yu, R. Sun, L. Cao, W.-H. Liao, and C.-P. Wong, Adv. Energy Mater., 9, (2019).

  9. S. Luo, Y. Shen, S. Yu, Y. Wan, W.-H. Liao, R. Sun, and C.-P. Wong, Energy Environ. Sci., 10, 137 (2017).

    Article  CAS  Google Scholar 

  10. J. K. Pandey and H. Takagi, Int. J. Mod. Phys. B, 25, 4216 (2011).

    Article  CAS  Google Scholar 

  11. S. Li, J. Zhang, J. Chen, M. Yao, X. Liu, and Z. Jiang, Macromol. Res., 27, 649 (2019).

    Article  CAS  Google Scholar 

  12. F. Zhao, Y. Shi, L. Pan, and G. Yu, Acc. Chem. Res., 50, 1734 (2017).

    Article  CAS  Google Scholar 

  13. I. Oh, S. I. Jeon, I. J. Chung, and C.-H. Ahn, Macromol. Res., 27, 435 (2019).

    Article  CAS  Google Scholar 

  14. N. Hohlbein, A. Shaaban, A. Bras, W. Pyckhout-Hintzen, and A. Schmidt, Phys. Chem. Chem. Phys., 17, 21005 (2015).

    Article  CAS  Google Scholar 

  15. D. Arunbabu, S. M. Noh, J. H. Nam, and J. K. Oh, Macromol. Chem. Phys., 217, 2191 (2016).

    Article  CAS  Google Scholar 

  16. Y. Yanagisawa, Y. Nan, K. Okuro, and T. Aida, Science, 359, 72 (2018).

    Article  CAS  Google Scholar 

  17. P. Lin, S. Ma, X. Wang, and F. Zhou, Adv. Mater., 27, 2054 (2015).

    Article  CAS  Google Scholar 

  18. J. A. Neal, D. Mozhdehi, and Z. Guan, J. Am. Chem. Soc., 137, 4846 (2015).

    Article  CAS  Google Scholar 

  19. C. Gong, J. Liang, W. Hu, X. Niu, S. Ma, H. T. Hahn, and Q. Pei, Adv. Mater., 25, 4186 (2013).

    Article  CAS  Google Scholar 

  20. H. Jiang, Z. Wang, H. Geng, X. Song, H. Zeng, and C. Zhi, ACS Appl. Mater. Interfaces, 9, 10078 (2017).

    Article  CAS  Google Scholar 

  21. C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, and C. Linder, Nat. Chem., 8, 618 (2016).

    Article  CAS  Google Scholar 

  22. F. B. Madsen, L. Yu, and A. L. Skov, ACS Macro Lett., 5, 1196 (2016).

    Article  CAS  Google Scholar 

  23. L. Ling, F. Liu, J. Li, G. Zhang, R. Sun, and C. P. Wong, Macromol. Chem. Phys., 219, 1800369 (2018).

    Article  CAS  Google Scholar 

  24. A. Arya, M. Sadiq, and A. Sharma, Ionics, 24, 2295 (2018).

    Article  CAS  Google Scholar 

  25. S. Nayak, B. Sahoo, T. K Chaki, and D. Khastgir, RSC Adv., 3, 2620 (2013).

    Article  CAS  Google Scholar 

  26. J. Njuguna and K. Pielichowski, J. Mater. Sci., 39, 4081 (2004).

    Article  CAS  Google Scholar 

  27. L. Petit, B. Guiffard, L. Seveyrat, and D. Guyomar, Sens. Actuators, A, 148, 105 (2008).

    Article  CAS  Google Scholar 

  28. L. Cuvé, J.-P. Pascault, and G. Boiteux, Polymer, 33, 3957 (1992).

    Article  Google Scholar 

  29. M. Sabzi, S. Mirabedini, J. Zohuriaan-Mehr, and M. Atai, Prog. Org. Coat., 65, 222 (2009).

    Article  CAS  Google Scholar 

  30. V. D. da Silva, L. M. dos Santos, S. M. Subda, R. Ligabue, M. Seferin, C. L. Carone, and S. Einloft, Polym. Bull., 70, 1819 (2013).

    Article  CAS  Google Scholar 

  31. L. Ling, J. Li, G. Zhang, R. Sun, and C.-P. Wong, Macromol. Res., 26, 365 (2018).

    Article  CAS  Google Scholar 

  32. Z. Xu, Y. Zhao, X. Wang, and T. Lin, Chem. Commun., 49, 6755 (2013).

    Article  CAS  Google Scholar 

  33. J. Li, G. Zhang, L. Deng, S. Zhao, Y. Gao, K. Jiang, R. Sun, and C. Wong, J. Mater. Chem A, 2, 20642 (2014).

    Article  CAS  Google Scholar 

  34. J. Wang, C. Lv, Z. Li, and J. Zheng, Macromol. Mater. Eng., 303, 1800089 (2018).

    Article  CAS  Google Scholar 

  35. S. Yu, R. Zhang, Q. Wu, T. Chen, and P. Sun, Adv. Mater., 25, 4912 (2013).

    Article  CAS  Google Scholar 

  36. M. J. Barthel, T. Rudolph, A. Teichler, R. M. Paulus, J. Vitz, S. Hoeppener, M. D. Hager, F. H. Schacher, and U. S. Schubert, Adv. Funct. Mater., 23, 4921 (2013).

    Article  CAS  Google Scholar 

  37. Y.-L. Liu and T.-W. Chuo, Polym. Chem., 4, 2194 (2013).

    Article  CAS  Google Scholar 

  38. H. Tang and H. A. Sodano, Appl. Phys. Lett., 102, 063901 (2013).

    Article  CAS  Google Scholar 

  39. A. Arya and A. L. Sharma, J. Mater. Sci.: Mater. Electron., 29, 17903 (2018).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhui Yu or Rong Sun.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (51777209), National Key R&D Project from Minister of Science and Technology of China (2017YFB0406300), Shenzhen Key Fundamental Research Program (JCYJ20160608160307181) and Shenzhen Peacock Program (KQJSCX20170731163718639).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Huang, J., Yu, S. et al. Thermally Self-Healable Titanium Dioxide/Polyurethane Nanocomposites with Recoverable Mechanical and Dielectric Properties. Macromol. Res. 28, 373–381 (2020). https://doi.org/10.1007/s13233-020-8049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8049-5

Keywords

Navigation