Skip to main content
Log in

The Apex Set-Up for the Major Transitions in Individuality

  • Synthesis paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Morphological and functional hierarchies occurring in contemporary biological entities are amalgamated via a small number of progressive key-steps termed as Major Transition in Evolution (MTE) that encompass steps of Major Transition in Individuality (MTI). Literature views MTE/MTI in nature as a sequential increase in complexity, and has contributed insights into the emergence of genuine MTI candidates that actually build higher order individuals from simpler entities and into their specific properties. The theory- By considering a novel MTI trajectory termed the ‘MTI continuum’ (independent of the tree of life that contemplates taxonomic correlations), I found no literature consensus for this continuum’s apex. Next, I consider the properties of biological entities termed as ‘superorganism’ (eusocial insects, humans), also considered as highly-developed MTIs. I classify ‘superorganism’ as being on the level of ‘miscellaneous transitions’ that have not yet developed into real MTIs and that do not meet the ‘individual’ physiognomy. Then I assign the emergence of three new MTI diachronic-classes, the colonial-organisms, chimerism and multi-chimerism, suggesting that they represent highly complex MTIs that belong at the apex of the MTI continuum. These novel MTIs are neither fraternal, nor egalitarian, deprived of ‘kinship’ and ‘fairness’ considerations, yet still generate genuine and distinct libertarian entities. I posit that these MTIs embody the qualities of real units of selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amar, K. O., Chadwick, N. E., & Rinkevich, B. (2008). Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evolutionary Biology, 8, 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banfield, W. G., Woke, P. A., MacKay, C. M., & Cooper, H. L. (1965). Mosquito transmission of a reticulum cell sarcoma of hamsters. Science, 148, 1239–1240.

    Article  CAS  PubMed  Google Scholar 

  • Barki, Y., Gateño, D., Graur, D., & Rinkevich, B. (2002). Soft-coral natural chimerism: A window in ontogeny allows the creation of entities comprised of incongruous parts. Marine Ecology Progress Series, 231, 91–99.

    Article  Google Scholar 

  • Barrett, S. C. (2008). Major evolutionary transitions in flowering plant reproduction: An overview. International Journal of Plant Sciences, 169, 1–5.

    Article  Google Scholar 

  • Bastiaans, E., Debets, A. J., & Aanen, D. K. (2015). Experimental demonstration of the benefits of somatic fusion and the consequences for allorecognition. Evolution, 69, 1091–1099.

    Article  PubMed  Google Scholar 

  • Bayer, M. M., & Todd, C. D. (1997). Evidence for zooid senescence in the marine bryozoan Electra pilosa. Invertebrate Biology, 116, 331–340.

    Article  Google Scholar 

  • Boddy, A. M., Fortunato, A., Wilson Sayres, M., & Aktipis, A. (2015). Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays, 37, 1106–1118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buss, L. W. (1982). Somatic cell parasitism and the evolution of somatic tissue compatibility. Proceedings of the National Academy of Sciences of the United States of America, 79, 5337–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss, L. W. (1983). Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the United States of America, 80, 1387–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss, L. W. (1987). The evolution of individuality. Princeton: Princeton University Press.

    Google Scholar 

  • Casares, F. A., & Faugeron, S. (2016). Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evolutionary Ecology, 30, 953–972.

    Article  Google Scholar 

  • Clarke, E. (2016). A levels-of-selection approach to evolutionary individuality. Biology and Philosophy, 31, 893–911.

    Article  Google Scholar 

  • Danchin, E., & Wagner, R. H. (1997). The evolution of coloniality: The emergence of new perspectives. Trends in Ecology & Evolution, 12, 342–347.

    Article  CAS  Google Scholar 

  • Das, U., & Das, A. K. (2000). Review of canine transmissible venereal sarcoma. Veterinary Research Communications, 24, 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Feldgarden, M., & Yund, P. O. (1992). Allorecognition in colonial marine invertebrates: Does selection favor fusion with kin or fusion with self? Biological Bulletin, 182, 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Folse, H. J., & Roughgarden, J. (2010). What is an individual organism? A multilevel perspective. Q Rev Biol, 85, 447–472.

    Article  PubMed  Google Scholar 

  • Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87, 325–341.

    Article  PubMed  Google Scholar 

  • Gill, D. E., Chao, L., Perkins, S. L., & Wolf, J. B. (1995). Genetic mosaicism in plants and clonal animals. Annual Review of Ecology and Systematics, 26, 423–444.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2016). Individuality, subjectivity, and minimal cognition. Biology and Philosophy, 31, 775–796.

    Article  Google Scholar 

  • Grosberg, R. K., & Strathmann, R. R. (2007). The evolution of multicellularity: A minor major transition? Annual Review of Ecology Evolution and Systematics, 38, 621–654.

    Article  Google Scholar 

  • Guay, A., & Pradeu, T. (2016). Individuals across the sciences. New York: Oxford University Press.

    Google Scholar 

  • Haber, M. (2013). Colonies are individuals: revisiting the superorganism revival. In F. Bouchard & P. Huneman (Eds.), From groups to individuals: Evolution and emerging individuality (pp. 195–217). Cambridge: MIT Press.

    Google Scholar 

  • Hamilton, A., Smith, N. R., & Haber, M. H. (2009). Social insects and the individuality thesis: Cohesion and the colony as a selectable individual. In J. Gadau & J. Fewell (Eds.), Organization of Insect Societies (pp. 572–589). Cambridge: Harvard University Press.

    Google Scholar 

  • Hanschen, E. R., Davison, D. R., Grochau-Wright, Z. I., & Michod, R. E. (2017). Evolution of individuality: A case study in the volvocine green algae. Philosophy Theory and Practice in Biology, 9, 3.

    Article  Google Scholar 

  • Hanschen, E. R., Davison, D. R., Grochau-Wright, Z. I., & Michod, R. E. (2018). 20 individuality and the major evolutionary transitions. In S. B. Gissis, E. Lamm, & A. Shavit (Eds.), Landscapes of collectivity in the life sciences (pp. 255–268). Cambridge: MIT Press.

    Google Scholar 

  • Hartikainen, H., Humphries, S., & Okamura, B. (2014). Form and metabolic scaling in colonial animals. Journal of Experimental Biology, 217, 779–786.

    Article  PubMed  Google Scholar 

  • Harvell, C. D. (1994). The evolution of polymorphism in colonial invertebrates and social insects. The Quarterly Review of Biology, 69, 155–185.

    Article  Google Scholar 

  • Høeg, J. T., & Lutzen, J. (1995). Life cycle and reproduction in the Cirripedia Rhizocephala. Oceanography and Marine Biology: An Annual Review, 33, 427–485.

    Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2006). The evolution of information in the major transitions. Journal of Theoretical Biology, 239, 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, P., Uller, T., & Helanterä, H. (2014). Are ant supercolonies crucibles of a new major transition in evolution? Journal of Evolutionary Biology, 27, 1784–1796.

    Article  CAS  PubMed  Google Scholar 

  • Kikvidze, Z., & Callaway, R. M. (2009). Ecological facilitation may drive major evolutionary transitions. BioScience, 59, 399–404.

    Article  Google Scholar 

  • Magor, B. G., De Tomaso, A. W., Rinkevich, B., & Weissman, I. L. (1999). Allorecognition in colonial tunicates: Protection against predatory cell lineages? Immunological Reviews, 167, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, U., & O’Donoghue, K. (2014). Microchimeric fetal cells play a role in maternal wound healing after pregnancy. Chimerism, 5, 40–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard, Smith J. (1988). Evolutionary progress and levels of selection. In M. H. Nitecki (Ed.), Evolutionary progress (pp. 219–230). Chicago: University of Chicago Press.

    Google Scholar 

  • Maynard, Smith J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • McShea, D. W., & Changizi, M. A. (2003). Three puzzles in hierarchical evolution. Integrative and Comparative Biology, 43(1), 74–81.

    Article  PubMed  Google Scholar 

  • McShea, D. W., & Simpson, C. (2011). The miscellaneous transitions in evolution. In B. Calcott & K. Sterelny (Eds.), The major transitions in evolution revisited (pp. 17–33). Cambridge: MIT Press.

    Google Scholar 

  • Metzger, M. J., Reinisch, C., Sherry, J., & Goff, S. P. (2015). Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell, 161, 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger, M. J., et al. (2016). Widespread transmission of independent cancer lineages within multiple bivalve species. Nature, 534, 705–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michod, R. E., & Nedelcu, A. M. (2003). On the reorganization of fitness during evolutionary transitions in individuality. Integrative and Comparative Biology, 43, 64–73.

    Article  PubMed  Google Scholar 

  • Michod, R. E., Viossat, Y., Solari, C. A., Hurrand, M., & Nedelcu, A. M. (2006). Life history evolution and the origin of multicellularity. Journal of Theoretical Biology, 239, 257–272.

    Article  PubMed  Google Scholar 

  • Mizrahi, D., Navarrete, S. A., & Flores, A. (2014). Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs, 33, 443–448.

    Article  Google Scholar 

  • Nelson, J. L., et al. (2007). Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet β cell microchimerism. Proceedings of the National academy of Sciences of the United States of America, 104, 1637–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley, M. A., & Powell, R. (2016). Major problems in evolutionary transitions: How a metabolic perspective can enrich our understanding of macroevolution. Biology and Philosophy, 31, 159–189.

    Article  Google Scholar 

  • Pachut, J. F., Cuffey, R. J., & Anstey, R. L. (1991). The concepts of astogeny and ontogeny in stenolaemate bryozoans, and their illustration in colonies of Tabulipora carbonaria from the Lower Permian of Kansas. Journal of Paleontology, 65, 213–233.

    Article  Google Scholar 

  • Paz, G., & Rinkevich, B. (2002). Morphological consequences for multi-partner chimerism in Botrylloides, a colonial urochordate. Developmental and Comparative Immunology, 26, 615–622.

    Article  PubMed  Google Scholar 

  • Pietsch, P. W. (2005). Dimorphism, parasitism, and sex revisited: Modes of reproduction among deep-sea ceratioid anglerfishes (Teleostei: Lophiiformes). Ichthyological Research, 52, 207–236.

    Article  Google Scholar 

  • Pilat, N., & Wekerle, T. (2010). Transplantation tolerance through mixed chimerism. Nature Reviews Nephrology, 6, 594–605.

    Article  PubMed  Google Scholar 

  • Pineda-Krch, M., & Lehtila, K. (2004). Costs and benefits of genetic heterogeneity within organisms. Journal of Evolutionary Biology, 7, 1167–1177.

    Article  Google Scholar 

  • Popper, K. (1959). The Logic of Scientific Discovery. London: Routledge.

  • Pradeu, T. (2010). What is an organism? An immunological answer. History and Philosophy of the Life Sciences, 32, 247–268.

    PubMed  Google Scholar 

  • Queller, D. C. (1997). Cooperators since life began. The Quarterly Review of Biology, 72, 184–188.

    Article  Google Scholar 

  • Queller, D. C. (2000). Relatedness and the fraternal major transitions. Philosophical transactions of the Royal Society of London. Series B, 355, 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  • Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M., & Burt, A. (2009). Origins and evolution of a transmissible cancer. Evolution, 63, 2340–2349.

    Article  CAS  PubMed  Google Scholar 

  • Rietkerk, M., & Van de Koppel, J. (2008). Regular pattern formation in real ecosystems. Trends in Ecology & Evolution, 23, 169–175.

    Article  Google Scholar 

  • Rinkevich, B. (1996). Bi—vs. multi-chimerism in colonial urochordates: A hypothesis for links between natural tissue transplantation, allogenetics and evolutionary ecology. Experimental and Clinical Immunogenetics, 13, 61–69.

    CAS  PubMed  Google Scholar 

  • Rinkevich, B. (2000). A critical approach to the definition of Darwinian units of selection. Biological Bulletin, 199, 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich, B. (2001). Human natural chimerism: An acquired character or a vestige of evolution? Human Immunol., 62, 651–657.

    Article  CAS  Google Scholar 

  • Rinkevich, B. (2002a). Germ cell parasitism as an ecological and evolutionary puzzle: Hitchhiking with positively selected genotypes. Oikos, 96, 25–30.

    Article  Google Scholar 

  • Rinkevich, B. (2002b). The colonial urochordate Botryllus schlosseri: From stem cells and natural tissue transplantation to issues in evolutionary ecology. BioEssays, 24, 730–740.

    Article  PubMed  Google Scholar 

  • Rinkevich, B. (2004). Will two walk together, except they have agreed? Journal of Evolutionary Biology, 17, 1178–1179.

    Article  CAS  PubMed  Google Scholar 

  • Rinkevich, B. (2005). Natural chimerism in colonial urochordates. Journal of Experimental Marine Biology and Ecology, 322, 93–109.

    Article  Google Scholar 

  • Rinkevich, B. (2011). Quo vadis chimerism? Chimerism, 2, 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinkevich, B. (2017). Senescence in modular animals- botryllid ascidians as a unique aging system. In R. Salguero-Gomez (Ed.), The Evolution of Senescence in the Tree of Life (pp. 220–237). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Rinkevich, B. (2019). Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Global Change Biology, 25, 1198–1206.

    Article  Google Scholar 

  • Rinkevich, B., Shaish, L., Douek, J., & Ben-Shlomo, R. (2016). Venturing in coral larval chimerism: A compact functional domain with fostered genotypic diversity. Scientific Reports, 6, 19493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinkevich, B., & Shapira, M. (1999). Multi-partner urochordate chimeras outperform two-partner chimerical entities. Oikos, 87, 315–320.

    Article  Google Scholar 

  • Rinkevich, B., & Weissman, I. L. (1987). Chimeras in colonial invertebrates: A synergistic symbiosis or somatic and germ-cell parasitism? Symbiosis, 4, 117–134.

    Google Scholar 

  • Rinkevich, B., & Weissman, I. L. (1992). Chimeras vs genetically homogeneous individuals: Potential fitness costs and benefits. Oikos, 63, 119–124.

    Article  Google Scholar 

  • Rinkevich, B., & Yankelevich, I. (2004). Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. Journal of Experimental Biology, 207, 3531–3536.

    Article  PubMed  Google Scholar 

  • Roper, M., Ellison, C., Taylor, J. W., & Glass, N. L. (2011). Nuclear and genome dynamics in multinucleate ascomycete fungi. Current Biology, 21, R786–R793.

    Article  CAS  PubMed  Google Scholar 

  • Santelices, B. (2004). Mosaicism and chimerism as components of intraorganismal genetic heterogeneity. Journal of Evolutionary Biology, 17, 1187–1188.

    Article  CAS  PubMed  Google Scholar 

  • Santelices, B., Alvarado, J. L., & Flores, V. (2010). Size increments due to interindividual fusions: How much and for how long? Journal of Phycology, 46, 685–692.

    Article  Google Scholar 

  • Schultz, T. R., & Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National academy of Sciences of the United States of America, 105, 5435–5440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaish, L., Abelson, A., & Rinkevich, B. (2007). How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS ONE, 2(7), e644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddle, H. V., & Kaufman, J. (2015). Immunology of naturally transmissible tumors. Immunology, 144, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, C. (2011). How many levels are there? How insights from evolutionary transitions in individuality help measure the hierarchical complexity of life. In B. Calcott & K. Sterelney (Eds.), The major transitions in evolution revisited (pp. 199–226). Cambridge: MIT Press.

    Chapter  Google Scholar 

  • Stearns, S. C. (2007). Are we stalled part way through a major evolutionary transition from individual to group? Evolution, 61, 2275–2280.

    Article  PubMed  Google Scholar 

  • Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 112, 10104–10111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivol, E., Komorowski, R., & Drobyski, W. R. (2005). Emergent autoimmunity in graft-versus-host disease. Blood, 105, 4885–4891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh, T. C., & Chou, L. M. (2013). Aggregated settlement of Pocillopora damicornis planulae on injury sites may facilitate coral wound healing. Bulletin of Marine Science, 89, 583–584.

    Article  Google Scholar 

  • Wang, Y., et al. (2004). Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochemical and Biophysical Research Communications, 325, 961–967.

    Article  CAS  PubMed  Google Scholar 

  • West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. Proceedings of the National Academy of Sciences of the United States of America, 112, 10112–10119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, D. S., & Sober, E. (1989). Reviving the superorganism. Journal of Theoretical Biology, 136, 337–356.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., & Glass, N. L. (2001). Identification of specificity determinants and generation of alleles with novel specificity in the het-c heterokaryon incompatibility locus of Neurospora crassa. Molecular and Cellular Biology, 21, 1045–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to G. Paz for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Rinkevich.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinkevich, B. The Apex Set-Up for the Major Transitions in Individuality. Evol Biol 46, 217–228 (2019). https://doi.org/10.1007/s11692-019-09481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-019-09481-x

Keywords

Navigation