Skip to main content

Advertisement

Log in

Effects of surface pretreatments and coating period on hydroxyapatite coating of Ti6Al4V alloy

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, Ti6Al4V plates were gone through three steps of pretreatment process (sandblasting + acid etching + preheating) followed by biomimetic coating of pure hydroxyapatites (HAp) on pretreated substrate. Pretreated substrates were examined by SEM, EDS, AFM, FTIR, and XRD; meanwhile, prepared coatings were examined by SEM, EDS, FTIR, XRD, XPS, scratch test, and in vitro cell studies (SaOS-2 cell line). Prepared coatings were also investigated in terms of antibacterial property by determining the survival of the Staphylococcus epidermidis on the surface. Structural analysis results of pretreated substrates proved that surface roughness increased proportionally as sandblasting, acid etching, and preheating process were performed. Successively, surface became more porous according to SEM images which were also supported by AFM results that indicate that Ra increased up to 953 nm values. EDS and FTIR spectra showed that functional groups were formed with the pretreatment procedure. Especially titanium salts were formed during acid etching process while preheating caused oxidation. XRD spectra revealed that as-received substrates mostly consisted of α-Ti, acid etching resulted in formation of TiH2 structure and oxidation resulted to form rutile and anatase structure patterns. Pretreatment procedure had positive effect on biomimetic coatings according to the evaluation of structural, mechanical, and biological properties. SEM analysis revealed that HAp nucleation started 4 days after immersion and nucleation increased with the incubation time. EDS results indicated that maximum Ca/P ratio (1.48) was achieved by P14. FTIR, XRD, and XPS analysis proved the presence of hydroxyapatite on the substrate surface. The pretreatment procedure had significant influence on mechanical properties of the coatings resulting in increase of critical loads. P14 sample had the highest critical load. In terms of biological evaluation, P14 exhibited the highest cell proliferation and lowest bacterial adhesion. The highest stability and coherence of P14 coating was also confirmed by mechanical test results. Eventually, it was observed that pretreatment technique has great effect on surface properties. In addition, 14 days immersion period was found to be optimum along the investigated immersion times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., Ong, J.L.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomater. 27, 5512–5517 (2006)

    Article  CAS  Google Scholar 

  2. Dobzyniak, M., Fehring, T.K., Odum, S.: Early failure in total hip arthroplasty. Clin. Orthop. Relat. Res. 447, 76–78 (2006)

    Article  Google Scholar 

  3. Losina, E., Barrett, J., Mahomed, N.N., Baron, J.A., Katz, J.N.: Early failures of total hip replacement: effect of surgeon volume. Arthritis Rheum. 50, 1338–1343 (2004)

    Article  Google Scholar 

  4. Long, M., Rack, H.J.: Titanium alloys in total joint replacement-a materials science perspective. Biomater. 19, 1621–1639 (1998)

    Article  CAS  Google Scholar 

  5. Xu, S., Xiaoyu, Y., Yuan, S., Minhua, T., Jian, L., Aidi, N., Xing, L.: Morphology improvement of sandblasted and acid-etched titanium surface and osteoblast attachment promotion by hydroxyapatite coating. Rare Metal Mater. Eng. 44, 67–72 (2015)

    Article  CAS  Google Scholar 

  6. Fujibayashi, S., Neo, M., Kim, H.M., Kokubo, T., Nakamura, T.: Osteoinduction of porous bioactive titanium metal. Biomater. 25, 443–450 (2004)

    Article  CAS  Google Scholar 

  7. Kokubo, T., Yamaguchi, S.: Novel bioactive materials developed by simulated body fluid evaluation: surface-modified Ti metal and its alloys. Acta Biomater. 44, 16–30 (2016)

    Article  CAS  Google Scholar 

  8. Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. Rep. 47, 49–121 (2004)

    Article  Google Scholar 

  9. Liu, Y., Jiang, T., Zhou, Y., Zhang, Z., Wang, Z., Tong, H., Shen, X., Wang, Y.: Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface. Mater. Sci. Eng. C. 31, 1055–1061 (2011)

    Article  Google Scholar 

  10. Yanovska, A., Kuznetsov, V., Stanislavov, A., Danilchenko, S., Sukhodub, L.: Synthesis and characterization of hydroxyapatite-based coatings for medical implants obtained on chemically modified Ti6Al4V substrates. Surf. Coat. Technol. 205, 5324–5329 (2011)

    Article  CAS  Google Scholar 

  11. An, S.H., Matsumoto, T., Miyajima, H., Sasaki, J.I., Narayanan, R., Kim, K.H.: Surface characterization of alkali- and heat-treated Ti with or without prior acid etching. Appl. Surf. Sci. 258, 4377–4382 (2012)

    Article  CAS  Google Scholar 

  12. Chen, J.C., Ko, C.L., Lin, D.J., Wu, H.Y., Hung, C.C., Chen, W.C.: In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-018-00292-5

  13. Deng, F., Zhang, W., Zhang, P., Liu, C., Ling, J.: Improvement in the morphology of micro-arc oxidised titanium surfaces: a new process to increase osteoblast response. Mater. Sci. Eng. C. 30, 141–147 (2010)

    Article  CAS  Google Scholar 

  14. Ban, S., Iwaya, Y., Kono, H., Sato, H.: Surface modification of titanium by etching in concentrated sulfuric acid. Dent. Mater. 22, 1115–1120 (2006)

    Article  CAS  Google Scholar 

  15. Turk, S., Altınsoy, I., Çelebi, G.E., Ipek, M., Ozacar, M., Bindal, C.: A comparison of pretreatments on hydroxyapatite formation on Ti by biomimetic method. J. Aust. Ceram. Soc. 54, 533–543 (2018)

    Article  CAS  Google Scholar 

  16. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomater. 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  17. Ohtsu, N., Kakuchi, Y., Ohtsuki, T.: Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl. Surf. Sci. 445, 596–600 (2017)

    Article  Google Scholar 

  18. Yang, A., Han, Y., Pan, Y., Xing, H., Li, J.: Optimum surface roughness prediction for titanium alloy by adopting response surface methodology. Results Phys. 7, 1046–1050 (2017)

    Article  Google Scholar 

  19. Henriques, B., Sampaio, M., Buciumeanu, M., Souza, J.C.M., Gomes, J.R., Silva, F., Carvalho, O.: Laser surface structuring of Ti6Al4V substrates for adhesion enhancement in Ti6Al4V-PEEK joints. Mater. Sci. Eng. C. 79, 177–184 (2017)

    Article  CAS  Google Scholar 

  20. Baek, S.M., Polyakov, A.V., Moon, J.H., Semenova, I.P., Valiev, R.Z., Kim, H.S.: Effect of surface etching on the tensile behavior of coarse- and ultrafine-grained pure titanium. Mater. Sci. Eng. A. 707, 337–343 (2017)

    Article  CAS  Google Scholar 

  21. Hatamleh, M.M., Wu, X., Alnazzawi, A., Watson, J., Watts, D.: Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent. Mater. 34, 676–683 (2018)

    Article  CAS  Google Scholar 

  22. Li, B., Li, J., Liang, C., Li, H., Guo, L., Liu, S., Wang, H.: Surface roughness and hydrophilicity of titanium after anodic oxidation. Rare Metal Mater. Eng. 45, 858–862 (2016)

    Article  CAS  Google Scholar 

  23. Shokri, B., Firouzjah, M.A., Hosseini, S.I.: FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. Proc. 19th Int. Plasma Chem Soc, pp. 1–4 (2009)

  24. Givan, A., Grothe, H., Loewenschuss, A., Nielsen, C.J.: Infrared spectra and ab initio calculations of matrix isolated dimethyl sulfone and its water complex. Phys. Chem. Chem. Phys. 4, 255–263 (2002)

    Article  CAS  Google Scholar 

  25. Hamadanian, M., Reisi-Vanani, A., Majedi, A.: Sol-gel preparation and characterization of co/TiO2 nanoparticles: application to the degradation of methyl orange. J. Iran. Chem. Soc. 7, 52–58 (2010)

    Article  Google Scholar 

  26. Infrared Spectroscopy Absorption Table-Chemistry LibreTexts. https://chem.libretexts.org/Reference/Reference_Tables/Spectroscopic_Parameters/Infrared_Spectroscopy_Absorption_Table. Accessed 17 March 2018

  27. Yilmaz, B., Evis, Z., Güldiken, M.: Titanyum Alaşımının Biyomimetik Yöntemle Kalsiyum Fosfat Kaplanması. J. Fac. Eng. Archit. Gazi Univ. 29, 105–109 (2014)

    Google Scholar 

  28. Teker, D., Muhaffel, F., Menekse, M., Karaguler, N.G., Baydogan, M., Cimenoglu, H.: Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C. 48, 579–585 (2015)

    Article  CAS  Google Scholar 

  29. Liu, D.M., Troczynski, T., Tseng, W.J.: Water-based sol-gel synthesis of hydroxyapatite: process development. Biomater. 22, 1721–1730 (2001)

    Article  CAS  Google Scholar 

  30. Avci, M., Yilmaz, B., Tezcaner, A., Evis, Z.: Strontium doped hydroxyapatite biomimetic coatings on Ti6Al4V plates. Ceram. Int. 43, 9431–9436 (2017)

    Article  CAS  Google Scholar 

  31. Silva, C.C., Pinheiro, A.G., Miranda, M.A.R., Góes, J.C., Sombra, A.S.B.: Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci. 5, 553–558 (2003)

    Article  CAS  Google Scholar 

  32. Pylypchuk, I.V., Gorbyk, P.P., Petranovska, A.L., Korduban, O.M., Markovsky, P.E., Ivasyshyn, O.M.: Chapter 7 - Formation of Biomimetic Hydroxyapatite Coatings on the Surface of Titanium and Ti-Containing Alloys: Ti-6Al-4V and Ti-Zr-Nb. Appl. Nanobiomater. 3, 193–229 (2016)

    CAS  Google Scholar 

  33. Durdu, S., Usta, M., Berkem, A.S.: Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surf. Coat. Technol. 301, 85–93 (2016)

    Article  CAS  Google Scholar 

  34. Al-Hazmi, F.E.: Synthesis and electrical properties of Bi doped hydroxyapatite ceramics. J. Alloys Compd. 665, 119–123 (2016)

    Article  CAS  Google Scholar 

  35. Wang, H.Y., Zhu, R.F., Lu, Y.P., Xiao, G.Y., He, K., Yuan, Y.F., Ma, X.N., Li, Y.: Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique. Appl. Surf. Sci. 292, 204–212 (2014)

    Article  CAS  Google Scholar 

  36. Sumathi, S., Buvaneswari, G.: Synthesis of apatite structure based BiNaCa3(PO4)3OH and its application for condensation reaction. Ceram. Int. 38, 3547–3552 (2012)

    Article  CAS  Google Scholar 

  37. Cochis, A., Azzimonti, B., Valle, C.D., De Giglio, E., Bloise, N., Visai, L., Cometa, S., Rimondini, L., Chiesa, R.: The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii. Biomater. 80, 80–95 (2016)

    Article  CAS  Google Scholar 

  38. Forsgren, J., Svahn, F., Jarmar, T., Engqvist, H.: Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater. 3, 980–984 (2007)

    Article  CAS  Google Scholar 

  39. Yilmaz, B., Evis, Z., Tezcaner, A., Banerjee, S.: Surface characterization and biocompatibility of selenium-doped hydroxyapatite coating on titanium alloy. Int. J. Appl. Ceram. Technol. 13, 1059–1068 (2016)

    Article  CAS  Google Scholar 

  40. Andrukhov, O., Huber, R., Shi, B., Berner, S., Rausch-Fan, X., Moritz, A., Spencer, N.D., Schedle, A.: Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent. Mater. 32, 1374–1384 (2016)

    Article  CAS  Google Scholar 

  41. Rupp, F., Liang, L., Geis-Gerstorfer, J., Scheideler, L., Hüttig, F.: Surface characteristics of dental implants: a review. Dent. Mater. 34, 40–57 (2018)

    Article  CAS  Google Scholar 

  42. Yilmaz, B., Alshemary, A.Z., Evis, Z.: Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem. J. 144, 443–453 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Evis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Available Online at: www.austceram.com/ACS-Journal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, T., Evis, Z., Tezcaner, A. et al. Effects of surface pretreatments and coating period on hydroxyapatite coating of Ti6Al4V alloy. J Aust Ceram Soc 56, 545–557 (2020). https://doi.org/10.1007/s41779-019-00364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00364-0

Keywords

Navigation