Skip to main content
Log in

On the performance of weighted bootstrapped kernel deconvolution density estimators

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose a weighted bootstrap approach that can improve on current methods to approximate the finite sample distribution of normalized maximal deviations of kernel deconvolution density estimators in the case of ordinary smooth errors. Using results from the approximation theory for weighted bootstrap empirical processes, we establish an unconditional weak limit theorem for the corresponding weighted bootstrap statistics. Because the proposed method uses weights that are not necessarily confined to be uniform (as in Efron’s original bootstrap), it provides the practitioner with additional flexibility for choosing the weights. As an immediate consequence of our results, one can construct uniform confidence bands, or perform goodness-of-fit tests, for the underlying density. We have also carried out some numerical examples which show that, depending on the bootstrap weights chosen, the proposed method has the potential to perform better than the current procedures in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The inclusion of the random weighting method here is based on the recommendations of an anonymous referee.

References

  • Achilleos A, Delaigle A (2012) Local bandwidth selectors for deconvolution kernel density estimation. Stat Comput 22:563–577

    MathSciNet  MATH  Google Scholar 

  • Ahlgren N, Catani P (2016) Wild bootstrap tests for autocorrelation in vector autoregressive models. Stat Pap 58:1189–1216

    MathSciNet  MATH  Google Scholar 

  • Barbe P, Bertail P (1995) The weighted bootstrap. Lecture notes in statistics. Springer, New York

    MATH  Google Scholar 

  • Benšić M, Sabo K (2016) Uniform distribution width estimation from data observed with Laplace additive error. J Korean Stat Soc 45:505–517

    MathSciNet  MATH  Google Scholar 

  • Bickel P, Rosenblatt M (1973) On some global measures of the deviations of density function estimates. Ann Stat 1:1075–1095

    MathSciNet  MATH  Google Scholar 

  • Bissantz N, Dümbgen L, Holzmann H, Munk A (2007) Nonparametric confidence bands in deconvolution density estimation. J R Stat Soc Ser B 69:483–506

    MathSciNet  Google Scholar 

  • Bouzebda S, Papamichail C, Limnios N (2017) On a multidimensional general bootstrap for empirical estimator of continuous-time semi-Markov kernels with applications. J Nonparametr Stat 30(1):49–86. https://doi.org/10.1080/10485252.2017.1404059

    Article  MathSciNet  MATH  Google Scholar 

  • Burch C, Guyader S, Samarov D, Shen H (2007) Experimental estimate of the abundance and effects of nearly neutral mutations in the RNA virus \(\phi \)6. Genetics 176:467–476

    Google Scholar 

  • Burke M (1998) A Gaussian bootstrap approach to estimation and tests. In: Szyszkowicz B (ed) Asymptotic methods in probability and statistics. North-Holland, Amsterdam, pp 697–706

    MATH  Google Scholar 

  • Burke M (2000) Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap. Stat Probab Lett 46:13–20

    MathSciNet  MATH  Google Scholar 

  • Burke MD (2010) Approximations for a multivariate hybrid process with applications to changepoint detection. Math Methods Stat 19:121–135

    MATH  Google Scholar 

  • Carroll R, Hall P (1988) Optimal rates of convergence for deconvolving a density. J Am Stat Assoc 83:1184–1186

    MathSciNet  MATH  Google Scholar 

  • Cator E (2001) Deconvolution with arbitrary smooth kernels. Stat Probab Lett 54:205–215

    MathSciNet  MATH  Google Scholar 

  • Cheng G, Huang JZ (2010) Bootstrap consistency for general semiparametric M-estimation. Ann Stat 38:2884–2915

    MathSciNet  MATH  Google Scholar 

  • Chesneau C, Fadili J (2013) Wavelet-based density estimation in a heteroscedastic convolution model. Commun Stat Theory Methods 42:3085–3099

    MathSciNet  MATH  Google Scholar 

  • Chiang CT, James LF, Wang MC (2005) Random weighted bootstrap method for recurrent events with informative censoring. Lifetime Data Anal 11:489–509

    MathSciNet  MATH  Google Scholar 

  • Chiang CT, Wang SH, Hung H (2009) Random weighting and Edgeworth expansion for the nonparametric time-dependent AUC estimator. Stat Sin 19:969–979

    MathSciNet  MATH  Google Scholar 

  • Cornelis G, Hassellöv M (2014) A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS. J Anal At Spectrom 29:134–144

    Google Scholar 

  • Delaigle A, Gijbels I (2004) Practical bandwidth selection in deconvolution kernel density estimation. Comput Stat Data Anal 45:249–267

    MathSciNet  MATH  Google Scholar 

  • Delaigle A, Gijbels I (2006) Data-driven boundary estimation in deconvolution problems. Comput Stat Data Anal 50:1965–1994

    MathSciNet  MATH  Google Scholar 

  • Delaigle A, Hall P (2014) Parametrically assisted nonparametric estimation of a density in the deconvolution problem. J Am Stat Assoc 109:717–729

    MathSciNet  MATH  Google Scholar 

  • Delaigle A, Meister A (2008) Density estimation with heteroscedastic error. Bernoulli 14:562–579

    MathSciNet  MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    MathSciNet  MATH  Google Scholar 

  • Fan J (1991) Asymptotic normality for deconvolution kernel density estimators. Sankhya Indian J Stat A 53:97–110

    MathSciNet  MATH  Google Scholar 

  • Fan J (1992) Deconvolution with supersmooth distributions. Can J of Stat 20:155–169

    MathSciNet  MATH  Google Scholar 

  • Fan Y, Liu Y (1997) A note on asymptotic normality for deconvolution kernel density estimators. Sankhya Indian J Stat A 59:138–141

    MathSciNet  MATH  Google Scholar 

  • Galvao A, Montes-Rojas G, Olmo J, Song S (2018) On solving endogeneity with invalid instruments: an application to investment equations. J R Stat Soc A 181:1–28

    MathSciNet  Google Scholar 

  • Gao S, Zhong Y (2010) The random weighting estimation of kernel density. J Stat Plan Inference 140:2403–2407

    MathSciNet  MATH  Google Scholar 

  • Hall P (1991) On convergence rates of suprema. Probab Theory Relat Fields 89:447–455

    MathSciNet  MATH  Google Scholar 

  • Hall P (1992) The bootstrap and Edgeworth expansion. Springer, New York

    MATH  Google Scholar 

  • Hall P, Mammen E (1994) On general resampling algorithms and their performance in distribution estimation. Ann Stat 22:2011–2030

    MathSciNet  MATH  Google Scholar 

  • Hesse CH (1999) Data-driven deconvolution. J Nonparametr Stat 10:343–373

    MathSciNet  MATH  Google Scholar 

  • Horváth L (2000) Approximations for hybrids of empirical and partial sums processes. J Stat Plan Inference 88:1–18

    MathSciNet  MATH  Google Scholar 

  • Horváth L, Kokoszka P, Steinebach J (2000) Approximations for weighted bootstrap processes with an application. Stat Probab Lett 48:59–70

    MathSciNet  MATH  Google Scholar 

  • Janssen A (2005) Resampling Student’s t-type statistics. Ann Inst Stat Math 57:507–529

    MathSciNet  MATH  Google Scholar 

  • Janssen A, Pauls T (2003) How do bootstrap and permutation tests work? Ann Stat 31:768–806

    MathSciNet  MATH  Google Scholar 

  • Kojadinovic I, Yan J (2012) Goodness-of-fit testing based on a weighted bootstrap: a fast large-sample alternative to the parametric bootstrap. Can J Stat 40:480–500

    MathSciNet  MATH  Google Scholar 

  • Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit for copulas. Stat Sin 21:841–871

    MathSciNet  MATH  Google Scholar 

  • Konakov V, Piterbarg V (1984) On the convergence rate of maximal deviation distribution for kernel regression estimates. J Multivar Anal 15:279–294

    MathSciNet  MATH  Google Scholar 

  • Kosorok M (2008) Introduction to empirical processes and semiparametric inference. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Kulik R (2008) Nonparametric deconvolution problem for dependent sequences. Electron J Stat 2:722–740

    MathSciNet  MATH  Google Scholar 

  • Lacour C (2006) Rates of convergence for nonparametric deconvolution. C R Acad Sci Paris Ser I 342:877–882

    MathSciNet  MATH  Google Scholar 

  • Lee M, Shen H, Burch C, Marron S (2010) Direct deconvolution density estimation of a mixture distribution motivated by mutation effects distribution. J Nonparametr Stat 22:1–22

    MathSciNet  MATH  Google Scholar 

  • Mason DM, Newton MA (1992) A rank statistics approach to the consistency of a general bootstrap. Ann Stat 20:1611–1624

    MathSciNet  MATH  Google Scholar 

  • Masry E (1991) Multivariate probability density deconvolution for stationary random processes. IEEE Trans Inf Theory 37:1105–1115

    MathSciNet  MATH  Google Scholar 

  • McIntyre J, Stefanski L (2011) Density estimation with replicate heteroscedastic measurements. Ann Inst Stat Math 63:81–99

    MathSciNet  MATH  Google Scholar 

  • Meister A (2009) Deconvolution problems in nonparametric statistics, vol 193. Lecture notes in statistics. Springer, Berlin

    MATH  Google Scholar 

  • Meister A (2010) Density deconvolution in a two-level heteroscedastic model with unknown error density. Electron J Stat 4:36–57

    MathSciNet  MATH  Google Scholar 

  • Mojirsheibani M, Pouliot W (2017) Weighted bootstrapped kernel density estimators in two-sample problems. J Nonparametr Stat 29:61–84

    MathSciNet  MATH  Google Scholar 

  • Praestgaard J, Wellner JA (1993) Exchangeably weighted bootstraps of the general empirical process. Ann Probab 21:2053–2086

    MathSciNet  MATH  Google Scholar 

  • Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9:130–134

    MathSciNet  Google Scholar 

  • Shao J, Tu DS (1995) The Jackknife and bootstrap. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  • Singh K (1981) On the asymptotic accuracy of Efron’s bootstrap. Ann Stat 9:1187–1195

    MathSciNet  MATH  Google Scholar 

  • Stefanski L (1990) Rates of convergence of some estimators in a class of deconvolution problems. Stat Probab Lett 9:229–235

    MathSciNet  MATH  Google Scholar 

  • Stefanski L, Carroll R (1990) Deconvoluting kernel density estimators. Statistics 21:169–184

    MathSciNet  MATH  Google Scholar 

  • van Es AJ, Kok AR (1998) Simple kernel estimators for certain nonparametric deconvolution problems. Stat Probab Lett 39:151–160

    MathSciNet  MATH  Google Scholar 

  • van Es B, Uh H (2004) Asymptotic normality of nonparametric kernel type deconvolution density estimators: crossing the Cauchy boundary. J Nonparametr Stat 16:261–277

    MathSciNet  MATH  Google Scholar 

  • van Es B, Uh H (2005) Asymptotic normality of kernel-type deconvolution estimators. Scand J Stat 32:467–483

    MathSciNet  MATH  Google Scholar 

  • van Es B, Gugushvili S (2008) Weak convergence of the supremum distance for supersmooth kernel deconvolution. Stat Probab Lett 78:2932–2938

    MathSciNet  MATH  Google Scholar 

  • Wand M (1998) Finite sample performance of deconvolving density estimators. Stat Probab Lett 37:131–139

    MathSciNet  MATH  Google Scholar 

  • Wang XF, Wang B (2011) Deconvolution estimation in measurement error models: the R package decon. J Stat Softw 39:1–24

    Google Scholar 

  • Weng CS (1989) On a second-order asymptotic property of the Bayesian bootstrap mean. Ann Stat 17:705–710

    MathSciNet  MATH  Google Scholar 

  • Zamini R, Fakoor V, Sarmad M (2015) On estimation of a density function in multiplicative censoring. Stat Pap 56:661–676

    MathSciNet  MATH  Google Scholar 

  • Zhang CH (1990) Fourier methods for estimating mixing densities and distributions. Ann Stat 18:06–831

    MathSciNet  Google Scholar 

  • Zheng ZG, Tu DS (1988) Random weighting methods in regression models. Sci Sin Ser A 31:1442–1459

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF Grant DMS-1407400 of Majid Mojirsheibani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mojirsheibani.

Appendix

Appendix

1.1 Derivation of (25)

The derivation of (25) is similar to, and easier than, that of (31) given below.

1.2 Derivation of (31)

Since \(\big |\widehat{g}_{nn}(t)-\widehat{g}_n(t)\big |\ge \left( \big |\widehat{g}_{nn}(t)-\widehat{g}_n(t)\big |/\,\big |\widehat{g}_{nn}(t)\big |\right) \cdot \inf _{t\in [0,1]} |\widehat{g}_{nn}(t)|\), we find that for all \(n>0\)

$$\begin{aligned} \sup _{t\in [0,1]}\big |\widehat{g}_{nn}(t)-g_n(t)\big |\ge & {} \sup _{t\in [0,1]}\left| \frac{\widehat{g}_{nn}(t)-g_n(t)}{\widehat{g}_{nn}(t)}\right| \cdot \inf _{t\in [0,1]} |\widehat{g}_{nn}(t)| \end{aligned}$$
(32)

Now, observe that for all \(n>0\)

$$\begin{aligned}&-\sup _{t\in [0,1]}\big |\widehat{g}_{nn}(t)-\widehat{g}_n(t)\big | \le \inf _{t\in [0,1]} \big (|\widehat{g}_{nn}(t)|- |\widehat{g}_n(t)|\big ) \le \inf _{t\in [0,1]} \big |\widehat{g}_{nn}(t)- \widehat{g}_n(t)\big | \\&\quad \le \sup _{t\in [0,1]}\big |\widehat{g}_{nn}(t)-\widehat{g}_n(t)\big |. \end{aligned}$$

But, as \(n\rightarrow \infty \), both the far left and the far right sides of the above chain of inequalities converge to zero (by (30)) and, hence, so does the middle term, i.e., \(\inf _{t\in [0,1]} \big (|\widehat{g}_{nn}(t)|-|\widehat{g}_n(t)|\big )\rightarrow _p 0\). This together with part (a) of Assumption (A3) and the fact that \(\sup _{t\in [0,1]}|\widehat{g}_n(t)-g(t)|\rightarrow _p0\) for the kernel density estimator \(\widehat{g}_n\) defined in (17), imply that

$$\begin{aligned} \lim _{n\rightarrow \infty }\inf _{t\in [0,1]} |\widehat{g}_{nn}(t)|&= \lim _{n\rightarrow \infty }\inf _{t\in [0,1]} \big \{|\widehat{g}_{nn}(t)|- |\widehat{g}_n(t)|+|\widehat{g}_n(t)|-g(t)+ g(t)\big \}\\&\quad \ge \lim _{n\rightarrow \infty }\big \{\inf _{t\in [0,1]} \big (|\widehat{g}_{nn}(t)|- |\widehat{g}_n(t)|\big )+\inf _{t\in [0,1]}\big (|\widehat{g}_n(t)|-g(t)\big )\\&\qquad +\inf _{t\in [0,1]} g(t)\big \}\\&\quad =\,_p 0 + 0 + \inf _{t\in [0,1]} g(t) >0, \end{aligned}$$

where we have used the simple inequality that for bounded functions \(\psi _1, \psi _2: \mathcal {C}\rightarrow \mathbb {R}\), where \(\mathcal {C}\subset \mathbb {R}\), one has \(\inf _{t\in \mathcal {C}} \{\psi _1(t)+\psi _2(t)\}\ge \inf _{t\in \mathcal {C}} \psi _1(t) +\inf _{t\in \mathcal {C}} \psi _2(t)\). Next let \(\{a_n\}\) be any sequence of positive numbers converging to zero and observe that if we multiply both sides of the inequality (32) by \(a_n\sqrt{n\lambda _n/\log n}\), then upon taking the limit as \(n\rightarrow \infty \), we find (in view of (30)) that \(a_n\sqrt{n\lambda _n/\log n}\;\sup _{t\in [0,1]} \big |\big (\widehat{g}_{nn}(t)- \widehat{g}_n(t)\big )/\,\widehat{g}_{nn}(t)\big |\rightarrow _p 0\). Now, (31) follows because the sequence \(\{a_n\}\) can be chosen to converge arbitrarily slowly. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharadqah, A., Mojirsheibani, M. & Pouliot, W. On the performance of weighted bootstrapped kernel deconvolution density estimators. Stat Papers 61, 1773–1798 (2020). https://doi.org/10.1007/s00362-018-1006-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1006-0

Keywords

Mathematics Subject Classification

Navigation