Skip to main content
Log in

Ultrahigh Sensitivity Surface Plasmon Resonance–Based Fiber-Optic Sensors Using Metal-Graphene Layers with Ti3C2TMXene Overlayers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Precise detection of volatile organic compounds (VOCs) using high-sensitivity fiber-optic probes is highly desirable for rapid screening in the fields of medicine and food processing. A novel spectral surface plasmon resonance (SPR)–based fiber-optic sensor incorporating metal/graphene/Ti3C2TMXene layers for the detection of VOCs such as acetone and ethanol is proposed in this study. For the detection of acetone, optimum sensitivities of 5150, 4500, and 4200 nm/refractive index unit (RIU) are obtained using simulations, for sensors with Au, Ag, and Al, respectively, as metal layer. The highest sensitivity achieved at reasonably good detection accuracy is 19,750 nm/RIU, using a Au/graphene/Ti3C2Tx sensor, for VOCs with refractive index 1.434.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong D, Jiao L, Li C, Zhao C (2019) Rapid and real-time analysis of volatile compounds released from food using infrared and laser spectroscopy. TrAC Trends Anal Chem 110:410–416

    Article  CAS  Google Scholar 

  2. Popov TA (2011) Human exhaled breath analysis. Ann Allergy Asthma Immunol 106:451–456

    Article  CAS  PubMed  Google Scholar 

  3. Galassetti PR, Novak B, Nemet D, Rose-Gottron C, Cooper DM, Meinardi S, Newcomb R, Zaldivar F, Blake DR (2005) Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Diabetes Technol Ther 7:115–123

    Article  CAS  PubMed  Google Scholar 

  4. Ruzsányi V, Péter Kalapos M (2017) Breath acetone as a potential marker in clinical practice. J Breath Res 11:024002

    Article  CAS  PubMed  Google Scholar 

  5. Nardi-Agmon I, Peled N (2017) Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer (Auckland, NZ) 8:31–38

    CAS  Google Scholar 

  6. Gruber B, Keller S, Groeger T, Matuschek G, Szymczak W, Zimmermann R (2016) Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers. J Breath Res 10:036003

    Article  CAS  PubMed  Google Scholar 

  7. Tanda N, Hinokio Y, Washio J, Takahashi N, Koseki T (2014) Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. J Breath Res 8:046008

    Article  CAS  PubMed  Google Scholar 

  8. Righettoni M, Schmid A, Amann A, Pratsinis SE (2013) Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J Breath Res 7:037110

    Article  CAS  PubMed  Google Scholar 

  9. Phan N-T, Kim K-H, Jeon E-C, Kim U-H, Sohn JR, Pandey SK (2012) Analysis of volatile organic compounds released during food decaying processes. Environ Monit Assess 184:1683–1692

    Article  CAS  PubMed  Google Scholar 

  10. Jiao L, Guo Y, Chen J, Zhao X, Dong D (2019) Detecting volatile compounds in food by open-path Fourier-transform infrared spectroscopy. Food Res Int 119:968–973

    Article  CAS  PubMed  Google Scholar 

  11. Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y, Anasori B, Kim C-K, Choi Y-K, Kim J, Gogotsi Y, Jung H-T (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12:986–993

    Article  CAS  PubMed  Google Scholar 

  12. Andre RS, Sanfelice RC, Pavinatto A, Mattoso LHC, Correa DS (2018) Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater Des 156:154–166

    Article  CAS  Google Scholar 

  13. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133

    Article  CAS  PubMed  Google Scholar 

  14. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  15. Tang H, Hu Q, Zheng M, Chi Y, Qin X, Pang H, Xu Q (2018) MXene–2D layered electrode materials for energy storage. Prog Nat Sci Mater Int 28:133–147

    Article  CAS  Google Scholar 

  16. Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren CE, Barsoum MW, Gogotsi Y (2016) Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater 2:1600050

    Article  CAS  Google Scholar 

  17. Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S (2017) Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C 5:2488–2503

    Article  CAS  Google Scholar 

  18. Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensors Actuators B Chem 277:210–215

    Article  CAS  Google Scholar 

  19. Sinha A, Dhanjai H, Zhao Y, Huang XL, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. TrAC Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  20. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249

    Article  CAS  PubMed  Google Scholar 

  21. Bai X, Ling C, Shi L, Ouyang Y, Li Q, Wang J (2018) Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Sci Bull 63:1397–1403

    Article  CAS  Google Scholar 

  22. Li Z, Wu Y 2D early transition metal carbides (MXenes) for catalysis. Small 0:1804736

  23. Maleski K, Ren CE, Zhao M-Q, Anasori B, Gogotsi Y (2018) Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl Mater Interfaces 10:24491–24498

    Article  CAS  PubMed  Google Scholar 

  24. Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L, Weng B, Chen J (2018) An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. J Electrochem Soc 165:B227–B231

    Article  CAS  Google Scholar 

  25. Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L, Hu Q (2017) Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 416:781–789

    Article  CAS  Google Scholar 

  27. Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TAP (2017) Graphene based sensors and biosensors. TrAC Trends Anal Chem 91:53–66

    Article  CAS  Google Scholar 

  28. Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sensors Actuators A Phys 270:177–194

    Article  CAS  Google Scholar 

  29. Liu N, Chortos A, Lei T, Jin L, Kim TR, Bae W-G, Zhu C, Wang S, Pfattner R, Chen X, Sinclair R, Bao Z (2017) Ultratransparent and stretchable graphene electrodes. Sci Adv 3:e1700159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao S, Wang T, Liu T, Yan X, Li Z, Xu C (2018) Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126:271–278

    Article  CAS  Google Scholar 

  31. Liu T, Wang H, Liu Y, Xiao L, Zhou C, Liu Y, Xu C, Xiao S (2018) Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial. J Phys D Appl Phys 51:415105

    Article  CAS  Google Scholar 

  32. Xiao S, Wang T, Jiang X, Yan X, Cheng L, Wang B, Xu C (2017) Strong interaction between graphene layer and Fano resonance in terahertz metamaterials. J Phys D Appl Phys 50:195101

    Article  CAS  Google Scholar 

  33. Xiao S, Liu T, Zhou C, Jiang X, Cheng L, Xu C (2019) Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime. J Opt Soc Am B 36:E48–E54

    Article  CAS  Google Scholar 

  34. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7:1118–1129

    Article  Google Scholar 

  35. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220

    Article  CAS  Google Scholar 

  36. Gupta G, Kumar A, Boopathi M, Thavaselvam D, Singh B, Vijayaraghavan R (2011) Rapid and quantitative determination of biological warfare agent Brucella abortus CSP-31 using surface plasmon resonance

  37. Ghosh N, Gupta G, Boopathi M, Pal V, Singh AK, Gopalan N, Goel AK (2013) Surface plasmon resonance biosensor for detection of bacillus anthracis, the causative agent of anthrax from soil samples targeting protective antigen. Indian J Microbiol 53:48–55

    Article  CAS  PubMed  Google Scholar 

  38. Villuendas F, Pelayo J (1990) Optical fibre device for chemical seming based on surface plasmon excitridon. Sensors Actuators A Phys 23:1142–1145

    Article  CAS  Google Scholar 

  39. Yuan H, Ji W, Chu S, Qian S, Wang F, Masson J-F, Han X, Peng W (2018) Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified au nanoparticles. Biosens Bioelectron 117:637–643

    Article  CAS  PubMed  Google Scholar 

  40. Semwal V, Gupta BD (2019) Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method. Sensors Actuators B Chem 283:632–642

    Article  CAS  Google Scholar 

  41. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sensors Actuators B Chem 41:207–211

    Article  CAS  Google Scholar 

  42. Ghatak AK, Thyagarajan K (2006) Introduction to fiber optics. Cambridge University Press, Cambridge

    Google Scholar 

  43. Sharma AK, Gupta BD (2007) On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J Appl Phys 101:093111

    Article  CAS  Google Scholar 

  44. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1119

    Article  CAS  PubMed  Google Scholar 

  45. Lambrecht A, Reynaud S (2000) Casimir force between metallic mirrors. Eur Phys J D 8:309–318

    Article  CAS  Google Scholar 

  46. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

    Article  CAS  Google Scholar 

  47. Miranda A, Halim J, Lorke A, Barsoum MW (2017) Rendering Ti3C2Tx (MXene) monolayers visible. Mater Res Lett 5:322–328

    Article  CAS  Google Scholar 

  48. Sarika S, Gupta BD (2010) Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas Sci Technol 21:115202

    Article  CAS  Google Scholar 

  49. Hansen WN (1968) Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J Opt Soc Am 58:380–390

    Article  Google Scholar 

  50. Downes F, Taylor CM (2015) Optical fibre surface plasmon resonance sensor based on a palladium-yttrium alloy. Procedia Eng 120:602–605

    Article  CAS  Google Scholar 

  51. Mohammadi MD, Hamzehloo M (2019) Densities, viscosities, and refractive indices of binary and ternary mixtures of methanol, acetone, and chloroform at temperatures from (298.15–318.15) K and ambient pressure. Fluid Phase Equilib 483:14–30

    Article  CAS  Google Scholar 

  52. Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120:2893–2900

    Article  CAS  Google Scholar 

  53. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X (2017) Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11:2459–2469

    Article  CAS  PubMed  Google Scholar 

  54. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. K. V. Dominic, Professor of English (retired) and Editor-in-Chief, Writers Editors Critics (WEC), Prof. B. Hariharan, Institute of English, University of Kerala, and Thomas Nedumpara, North Cumbria University Hospitals NHS Trust, Carlisle, UK, for the support given in English language editing.  Sudheer VR acknowledges the Co-Operative Academy of Professional Education for providing fellowship under the Faculty Development Program 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. R. Sarath Kumar or S. Sankararaman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer, V.R., Kumar, S.R.S. & Sankararaman, S. Ultrahigh Sensitivity Surface Plasmon Resonance–Based Fiber-Optic Sensors Using Metal-Graphene Layers with Ti3C2TMXene Overlayers. Plasmonics 15, 457–466 (2020). https://doi.org/10.1007/s11468-019-01035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01035-3

Keywords

Navigation