Skip to main content
Log in

\(E_{2}\)-cells and mapping class groups

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We prove a new kind of stabilisation result, “secondary homological stability,” for the homology of mapping class groups of orientable surfaces with one boundary component. These results are obtained by constructing CW approximations to the classifying spaces of these groups, in the category of \(E_{2}\)-algebras, which have no \(E_{2}\)-cells below a certain vanishing line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abhau, C.-F. Bödigheimer and R. Ehrenfried, Homology of the mapping class group \(\Gamma _{2,1}\) for surfaces of genus 2 with a boundary curve, in The Zieschang Gedenkschrift., Geom. Topol. Monogr., vol. 14, pp. 1–25, Geom. Topol. Publ., Coventry, 2008.

    MATH  Google Scholar 

  2. V. I. Arnold, V. V. Goryunov, O. V. Lyashko and V. A. Vasil’ev, Singularity Theory. I, Springer, Berlin, 1998, translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences.

    MATH  Google Scholar 

  3. D. J. Benson and F. R. Cohen, Mapping class groups of low genus and their cohomology, Mem. Am. Math. Soc., 90, 443 (1991), iv+104

    MathSciNet  MATH  Google Scholar 

  4. F. J. Boes and A. Hermann, Moduli spaces of Riemann surfaces—homology computations and homology operations, 2015, http://www.math.uni-bonn.de/people/boes/masterarbeit_boes_hermann.pdf.

  5. S. K. Boldsen, Improved homological stability for the mapping class group with integral or twisted coefficients, Math. Z., 270 (2012), 297–329.

    MathSciNet  MATH  Google Scholar 

  6. M. Chan, S. Galatius and S. Payne, Tropical curves, graph homology, and top weight cohomology of \({M}_{g}\), 1805.10186, 2018.

  7. R. M. Charney, Homology stability for \(\mathrm{GL}_{n}\) of a Dedekind domain, Invent. Math., 56 (1980), 1–17.

    MathSciNet  MATH  Google Scholar 

  8. F. R. Cohen, T. J. Lada and J. P. May, The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, vol. 533, Springer, Berlin/New York, 1976.

    MATH  Google Scholar 

  9. C. Faber, Chow rings of moduli spaces of curves. II. Some results on the Chow ring of \(\overline{\mathcal{M}}_{4}\), Ann. Math. (2), 132 (1990), 421–449.

    MathSciNet  MATH  Google Scholar 

  10. C. Faber, A conjectural description of the tautological ring of the moduli space of curves, in Moduli of Curves and Abelian Varieties, Aspects Math., vol. E33, pp. 109–129, Friedr. Vieweg, Braunschweig, 1999.

    MATH  Google Scholar 

  11. Z. Fiedorowicz and Y. Song, The braid structure of mapping class groups, Sci. Bul. Josai Univ., 2 (1997), 21–29. Surgery and geometric topology (Sakado, 1996)

    MathSciNet  MATH  Google Scholar 

  12. E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, hep-th/9403055, 1994.

  13. S. Galatius, A. Kupers and O. Randal-Williams, Cellular \(E _{k}\)-algebras, 1805.07184, 2018.

  14. S. Galatius, A. Kupers and O. Randal-Williams, \(E_{\infty }\)-cells and general linear groups of finite fields, 1810.11931, 2018.

  15. V. Godin, The unstable integral homology of the mapping class groups of a surface with boundary, Math. Ann., 337 (2007), 15–60.

    MathSciNet  MATH  Google Scholar 

  16. A. Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. Éc. Norm. Supér. (4), 6 (1973), 53–66.

    MATH  Google Scholar 

  17. J. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math., 72 (1983), 221–239.

    MathSciNet  MATH  Google Scholar 

  18. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. Math. (2), 121 (1985), 215–249.

    MathSciNet  MATH  Google Scholar 

  19. J. Harer, The third homology group of the moduli space of curves, Duke Math. J., 63 (1991), 25–55.

    MathSciNet  MATH  Google Scholar 

  20. J. Harer, Improved stability for the homology of the mapping class groups of surfaces, preprint (1993).

  21. R. Hepworth, On the edge of the stable range, 1608.08834, 2016.

  22. N. V. Ivanov, On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Contemp. Math., vol. 150, Göttingen/Seattle, WA, 1991, pp. 149–194, Am. Math. Soc., Providence, 1993.

    Google Scholar 

  23. N. Kawazumi, On the stable cohomology algebra of extended mapping class groups for surfaces, in Groups of Diffeomorphisms, Adv. Stud. Pure Math., vol. 52, pp. 383–400, Math. Soc. Japan, Tokyo, 2008.

    MATH  Google Scholar 

  24. N. Kawazumi and S. Morita, The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford–Morita–Miller classes, 1996, http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2001-13.pdf.

  25. A. Kupers and J. Miller, \(E_{n}\)-cell attachments and a local-to-global principle for homological stability, Math. Ann., 370 (2018), 209–269.

    MathSciNet  MATH  Google Scholar 

  26. M. Korkmaz, Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math., 26 (2002), 101–114.

    MathSciNet  MATH  Google Scholar 

  27. M. Krannich, Homological stability of topological moduli spaces, Geom. Topol., 23 (2019), to appear, 1710.08484.

    MathSciNet  MATH  Google Scholar 

  28. M. Korkmaz and A. I. Stipsicz, The second homology groups of mapping class groups of orientable surfaces, Math. Proc. Camb. Philos. Soc., 134 (2003), 479–489.

    MATH  Google Scholar 

  29. N. Kawazumi and T. Uemura, Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J., 21 (1998), 372–380.

    MathSciNet  MATH  Google Scholar 

  30. E. L. Lima, On the local triviality of the restriction map for embeddings, Comment. Math. Helv., 38 (1964), 163–164.

    MathSciNet  MATH  Google Scholar 

  31. E. Looijenga, Cohomology of \(\mathcal{M}_{3}\) and \(\mathcal{M}^{1}_{3}\), in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Contemp. Math., vol. 150, Göttingen/Seattle, WA, 1991, pp. 205–228, Am. Math. Soc., Providence, 1993.

    MATH  Google Scholar 

  32. E. Looijenga, On the tautological ring of \(\mathcal{M}_{g}\), Invent. Math., 121 (1995), 411–419.

    MathSciNet  MATH  Google Scholar 

  33. E. Looijenga, Connectivity of complexes of separating curves, Groups Geom. Dyn., 7 (2013), 443–451.

    MathSciNet  MATH  Google Scholar 

  34. W. Meyer, Die Signatur von Flächenbündeln, Math. Ann., 201 (1973), 239–264.

    MathSciNet  MATH  Google Scholar 

  35. E. Y. Miller, The homology of the mapping class group, J. Differ. Geom., 24 (1986), 1–14.

    MathSciNet  MATH  Google Scholar 

  36. Y. N. Minsky, A brief introduction to mapping class groups, in Moduli Spaces of Riemann Surfaces, IAS/Park City Math. Ser., vol. 20, pp. 5–44, Am. Math. Soc., Providence, 2013.

    Google Scholar 

  37. S. Morita, On the homology groups of the mapping class groups of orientable surfaces with twisted coefficients, Proc. Jpn. Acad., Ser. A, Math. Sci., 62 (1986), 148–151.

    MathSciNet  MATH  Google Scholar 

  38. S. Morita, Characteristic classes of surface bundles, Invent. Math., 90 (1987), 551–577.

    MathSciNet  MATH  Google Scholar 

  39. S. Morita, Families of Jacobian manifolds and characteristic classes of surface bundles. I, Ann. Inst. Fourier (Grenoble), 39 (1989), 777–810.

    MathSciNet  MATH  Google Scholar 

  40. S. Morita, Generators for the tautological algebra of the moduli space of curves, Topology, 42 (2003), 787–819.

    MathSciNet  MATH  Google Scholar 

  41. I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. Math. (2), 165 (2007), 843–941.

    MathSciNet  MATH  Google Scholar 

  42. J. Miller and J. C. H. Wilson, Higher order representation stability and ordered configuration spaces of manifolds, Geom. Topol. (2016), to appear, 1611.01920.

  43. O. T. O’Meara, Symplectic Groups, Mathematical Surveys, vol. 16, Am. Math. Soc., Providence, 1978.

    MATH  Google Scholar 

  44. P. Patzt, Central stability homology, 1704.04128, 2017.

  45. W. Pitsch, Un calcul élémentaire de \(H_{2}({\mathcal{M}} _{g,1},{\mathbf{Z}})\) pour \(g\geq 4\), C. R. Acad. Sci., Sér. 1 Math., 329 (1999), 667–670.

    MathSciNet  MATH  Google Scholar 

  46. D. Quillen, Homotopy properties of the poset of nontrivial \(p\)-subgroups of a group, Adv. Math., 28 (1978), 101–128.

    MathSciNet  MATH  Google Scholar 

  47. O. Randal-Williams, Relations among tautological classes revisited, Adv. Math., 231 (2012), 1773–1785.

    MathSciNet  MATH  Google Scholar 

  48. O. Randal-Williams, Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc., 18 (2016), 1–81.

    MathSciNet  MATH  Google Scholar 

  49. O. Randal-Williams and N. Wahl, Homological stability for automorphism groups, Adv. Math., 318 (2017), 534–626.

    MathSciNet  MATH  Google Scholar 

  50. T. Sakasai, Lagrangian mapping class groups from a group homological point of view, Algebraic Geom. Topol., 12 (2012), 267–291.

    MathSciNet  MATH  Google Scholar 

  51. S. Smale, Diffeomorphisms of the 2-sphere, Proc. Am. Math. Soc., 10 (1959), 621–626.

    MathSciNet  MATH  Google Scholar 

  52. O. Tommasi, Rational cohomology of the moduli space of genus 4 curves, Compos. Math., 141 (2005), 359–384.

    MathSciNet  MATH  Google Scholar 

  53. W. van der Kallen and E. Looijenga, Spherical complexes attached to symplectic lattices, Geom. Dedic., 152 (2011), 197–211.

    MathSciNet  MATH  Google Scholar 

  54. N. Wahl, Homological stability for mapping class groups of surfaces, in Handbook of Moduli. Vol. III, Adv. Lect. Math. (ALM), vol. 26, pp. 547–583, International Press, Somerville, 2013.

    MATH  Google Scholar 

  55. B. Wajnryb, An elementary approach to the mapping class group of a surface, Geom. Topol., 3 (1999), 405–466.

    MathSciNet  MATH  Google Scholar 

  56. R. Wang, Homology Computations for Mapping Class Groups, in Particular for \(\Gamma ^{0}_{3,1}\), PhD Thesis, Universität Bonn, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kupers.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galatius, S., Kupers, A. & Randal-Williams, O. \(E_{2}\)-cells and mapping class groups. Publ.math.IHES 130, 1–61 (2019). https://doi.org/10.1007/s10240-019-00107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-019-00107-8

Navigation