Skip to main content
Log in

Absence of LEDGF/p75 Expression in Astrocytes May Affect HIV-1 Integration Efficiency

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In spite of effective anti-retroviral therapy, HIV-1 infection may still lead to neurological impairment in patients. The underlying mechanism of neurodegeneration remains mysterious. HIV-1 does not infect neurons, but does infect microglia cells in the brain. It is controversial whether HIV-1 productively infects astrocytes, an abundant glial cell type in the brain. Thirty years of investigation have led to conflicting reports concerning the entry, infection, and production of progeny virions from astrocytes. New models from studies in primary human fetal astrocytes suggest phagocytosis of HIV-1 with little productive infection. The retroviral life cycle requires integration of the viral genome to the host genome. The host protein LEDGF/p75 is required for efficient HIV-1 integration. In the absence of LEDGF/p75, HIV-1 integration and infection efficiency is reduced ten fold. Differentiated astrocytes do not appear to express LEDGF/p75, which suggests these cells are disabled for efficient integration. Phagocytosis of HIV-1 virions and the lack of LEDGF/p75 expression in astrocytes suggest that this cell type is not efficiently infected in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Carroll, A. and Brew, B., HIV-associated neurocognitive disorders: recent advances in pathogenesis, biomarkers, and treatment, F1000Research, 2017, vol. 6, p. 312.

    Article  Google Scholar 

  2. Coffin, J.M., Hughes, S.H., and Varmus, H.E., Retroviruses, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1997.

    Google Scholar 

  3. Takahashi, K., Wesselingh, S.L., Griffin, D.E., McArthur, J.C., Johnson, R.T., and Glass, J.D., Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry, Ann. Neurol., 1996, vol. 39, no. 6, pp. 705–711.

    Article  CAS  Google Scholar 

  4. Bissel, S.J. and Wiley, C.A., Human immunodeficiency virus infection of the brain: Pitfalls in evaluating infected/affected cell populations, Brain Pathol., 2004, vol. 14, no. 1, pp. 97–108.

    Article  CAS  Google Scholar 

  5. Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M., and Eisdorfer, C., The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis, J. Neurol. Sci., 2002, vol. 202, nos. 1–2, pp. 13–23.

    Article  CAS  Google Scholar 

  6. Boutet, A., Salim, H., Taoufik, Y., Lledo, P.M., Vincent, J.D., Delfraissy, J.F., et al., Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-1strains despite functional expression of the chemokine receptors CCR5 and CXCR4, Glia, 2001, vol. 34, no. 3, pp. 165–177.

    Article  CAS  Google Scholar 

  7. Churchill, M.J., Gorry, P.R., Cowley, D., Lal, L., Sonza, S., Purcell, D.F., et al., Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues, J. Neurol., 2006, vol. 12, no. 2, pp. 146–152.

    Google Scholar 

  8. Saito, Y., Sharer, L.R., Epstein, L.G., Michaels, J., Mintz, M., Louder, M., et al., Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues, Neurology, 1994, vol. 44, no. 3, part 1, pp. 474–481.

  9. Nath, A., Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia, J. Infect. Dis., 2002, vol. 186, no. 2, Suppl., p. S193-8.

    Article  CAS  Google Scholar 

  10. Chauhan, A., Tikoo, A., Patel, J., and Abdullah, A.M., HIV-1 endocytosis in astrocytes: a kiss of death or survival of the fittest?, Neurosci. Res., 2014, vol. 88, pp. 16–22.

    Article  CAS  Google Scholar 

  11. Russell, R.A., Chojnacki, J., Jones, D.M., Johnson, E., Do, T., Eggeling, C., et al., Astrocytes resist HIV-1 fusion but engulf infected macrophage material, Cell Rep., 2017, vol. 18, no. 6, pp. 1473–1483.

    Article  CAS  Google Scholar 

  12. Clarke, J.N., Lake, J.A., Burrell, C.J., Wesselingh, S.L., Gorry, P.R., and Li, P., Novel pathway of human immunodeficiency virus type 1 uptake and release in astrocytes, Virology, 2006, vol. 348, no. 1, pp. 141–155.

    Article  CAS  Google Scholar 

  13. Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., et al., HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells, J. Biol. Chem., 2003, vol. 278, no. 1, pp. 372–381.

    Article  CAS  Google Scholar 

  14. Llano, M., Saenz, D.T., Meehan, A., Wongthida, P., Peretz, M., Walker, W.H., et al., An essential role for LEDGF/p75 in HIV integration, Science, 2006, vol. 314, no. 5798, pp. 461–464.

    Article  CAS  Google Scholar 

  15. Shun, M.C., Raghavendra, N.K., Vandegraaff, N., Daigle, J.E., Hughes, S., Kellam, P., et al., LEDGF/p75 functions downstream from pre-integration complex formation to effect gene-specific HIV-1 integration, Genes Dev., 2007, vol. 21, no. 14, pp. 1767–1778.

    Article  CAS  Google Scholar 

  16. Llano, M., Morrison, J., and Poeschla, E.M., Virological and cellular roles of the transcriptional coactivator LEDGF/p75, Curr. Top. Microbiol. Immunol., 2009, vol. 339, pp. 125–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ge, H., Si, Y., and Roeder, R.G., Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation, EMBO J., 1998, vol. 17, no. 22, pp. 6723–6729.

    Article  CAS  Google Scholar 

  18. Chylack, L.T., Jr., Fu, L., Mancini, R., Martin-Rehrmann, M.D., Saunders, A.J., Konopka, G., et al., Lens epithelium-derived growth factor (LEDGF/p75) expression in fetal and adult human brain, Exp. Eye Res., 2004, vol. 79, no. 6, pp. 941–948.

    Article  CAS  Google Scholar 

  19. Canki, M., Thai, J.N., Chao, W., Ghorpade, A., Potash, M.J., and Volsky, D.J., Highly productive infection with pseudotyped human immunodeficiency virus type 1 (HIV-1) indicates no intracellular restrictions to HIV-1 replication in primary human astrocytes, J. Virol., 2001, vol. 75, no. 17, pp. 7925–7933.

    Article  CAS  Google Scholar 

  20. Aiken, C., Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A, J. Virol., 1997, vol. 71, no. 8, pp. 5871–5877.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sloan, R.D. and Wainberg, M.A., The role of unintegrated DNA in HIV infection, Retrovirology, 2011, vol. 8, p. 52.

    Article  CAS  Google Scholar 

  22. Pierson, T.C., Kieffer, T.L., Ruff, C.T., Buck, C., Gange, S.J., and Siliciano, R.F., Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication, J. Virol., 2002, vol, 76, no. 8, pp. 4138–4144.

    Article  CAS  Google Scholar 

  23. Pang, S., Koyanagi, Y., Miles, S., Wiley, C., Vinters, H.V., and Chen, I.S., High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients, Nature, 1990, vol. 343, no. 6253, pp. 85–89.

    Article  CAS  Google Scholar 

  24. Wu, Y., HIV-1 gene expression: Lessons from provirus and non-integrated DNA, Retrovirology, 2004, vol. 1, p. 13.

    Article  CAS  Google Scholar 

  25. Dickens, A.M., Yoo, S.W., Chin, A.C., Xu, J., Johnson, T.P., Trout, A.L., et al., Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging, Sci. Rep., 2017, vol. 7, no. 1, p. 7748.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank R. Fishel for discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Yoder.

Ethics declarations

FUNDING

The author is supported by NIH AI126742 and GM121284.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoder, K.E. Absence of LEDGF/p75 Expression in Astrocytes May Affect HIV-1 Integration Efficiency. Mol. Genet. Microbiol. Virol. 34, 81–83 (2019). https://doi.org/10.3103/S0891416819020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416819020113

Keywords:

Navigation