Skip to main content
Log in

Relation of Fractal Characteristics with Structural Parameters of Nanosized ZrO2 Determined by Various Methods

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A Correction to this article was published on 01 November 2019

This article has been updated

The fractal dimensions of nanodispersed zirconia determined by the BET and SAXS methods are compared. The fractal dimensions were shown to depend on the characteristic dimensions of the surface areas determined by different methods. A method for calculating the surface fractal dimension using the difference between the specific surface obtained by the BET and SAXS methods is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 11 December 2019

    Issue originally published online with incorrect cover date. It has been corrected.

References

  1. D. Avnir, The Fractal Approach to Heterogeneous Chemistry, John Wiley and Sons, New York (1989).

    Google Scholar 

  2. E. Feder, Fractals, Springer, Berlin (1988).

    Book  Google Scholar 

  3. W. G. Rothschild, Fractals in Chemistry, John Wiley and Sons, New York (1998).

    Google Scholar 

  4. J. C. Russ, Fractal Surfaces, Plenum Press, New York (1994).

    Book  Google Scholar 

  5. V. I. Roldugin, Usp. Fiz. Nauk, 72, No. 11, 1027-1054 (2003).

    Google Scholar 

  6. C. K. Lee and S. L. Lee, Heterog. Chem. Rev., 3, 269-302 (1996).

    Article  CAS  Google Scholar 

  7. F. Ehrburger-Dolle, Langmuir, 15, No. 18, 6004-6015 (1999).

    Article  CAS  Google Scholar 

  8. J. K. Garbacz and A. Kopkowski, Ads. Sci. Technol., 15, No. 9, 695-705 (1997).

    Article  CAS  Google Scholar 

  9. P. Pfeifer and K.-Y. Liu, Stud. Surf. Sci. Catal., 104, 625-677 (1997).

    Article  CAS  Google Scholar 

  10. P. A. Gauden, G. Rychlicki, A. P. Terzyk, and R. Wojsz, J. Therm. Anal., 54, No. 1, 351-361 (1998).

    Article  CAS  Google Scholar 

  11. W. Rudzinski, S.-L. Lee, T. Panczyk, and Ch.-Ch. S. Yan, J. Phys. Chem. B, 105, No. 44, 10847-10856 (2001).

    Article  CAS  Google Scholar 

  12. P. E. Strizhak, A. I. Tripol’skii, T. N. Gurnik, et al., Teor. Éksp. Khim., 44, No. 3, 138-143 (2008). [Theor. Exp. Chem., 44, No. 3, 144-149 (2008) (English translation).]

  13. A. I. Tripol’skii, T. N. Gurnik, and P. E. Strizhak, Teor. Éksp. Khim., 44, No. 6, 338-342 (2008). [Theor. Exp. Chem., 44, No. 6, 345-350 (2008) (English translation).]

  14. T. E. Konstantinova, I. A. Danilenko, V. V. Tokii, and V. A. Glazunova, Nauk. Innovats., 1, No. 3, 76-87 (2005).

    Article  Google Scholar 

  15. M. Jaroniec, Langmuir, 11, No. 6, 2316-2317 (1995).

    Article  CAS  Google Scholar 

  16. A. V. Neimark, M. Hanson, and K. K. Unger, J. Phys. Chem., 97, No. 22, 6011-6015 (1993).

    Article  CAS  Google Scholar 

  17. P. Pfeifer and M. Obert, The Fractal Approach to Heterogeneous Chemistry,D. Avnir (ed.), Wiley, New York (1989).

  18. P. Pfeifer and D. Avnir, J. Chem. Phys., 79, No. 7, 3558-3565 (1983).

    Article  CAS  Google Scholar 

  19. D. Avnir, D. Farin, and P. Pfeifer, Nature, 308, 261-263 (1984).

    Article  CAS  Google Scholar 

  20. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., New York (1983).

    Book  Google Scholar 

  21. D. Avnir, J. Am. Chem. Soc., 109, No. 10, 2931-2938 (1987).

    Article  CAS  Google Scholar 

  22. D. R. Vollet, W. A. T. de Sousa, D. A. Donatti, and A. Ibañez Ruiz, J. Non-Cryst. Solids, 353, No. 2, 143-150 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Trypolskyi.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 4, pp. 222-225, July-August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trypolskyi, A.I., Didenko, O.Z. & Strizhak, P.E. Relation of Fractal Characteristics with Structural Parameters of Nanosized ZrO2 Determined by Various Methods. Theor Exp Chem 55, 246–249 (2019). https://doi.org/10.1007/s11237-019-09615-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09615-4

Key words

Navigation