Skip to main content

Advertisement

Log in

Central Composite Design for Optimization of Zoledronic Acid Loaded PLGA Nanoparticles

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Zoledronic acid (ZA) is one of the drugs used clinically for the treatment of osteoporosis, and its therapeutic effect is due to the inhibition of osteoclastic cells leading to bone resorption. The aim of this study is developing an optimization method for poly(lactide-co-glycolide) (PLGA) nanoparticles of ZA which is intended for local application to enable guided bone regeneration.

Methods

Three formulation parameters (ZA content, PLGA/Pluronic F68 ratio, and organic to aqueous phase ratio) were optimized to evaluate their effects on particle size (Y1), polydispersity index (PDI) (Y2), zeta potential (Y3), and entrapment efficiency (Y4) utilizing central composite experimental design (CCD). Interaction among components was studied by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis. Morphology of nanoparticles was visualized with transmission electron microscopy (TEM). Stability studies of nanoparticles were also carried out for 6 months.

Results

The results revealed that formulation parameters significantly affected Y1, Y2, Y3, and Y4 of the nanoparticles. The developed quadratic model showed high correlation (R2 > 0.84) between predicted response and evaluated parameters. Spherical nanoparticles with low mean particle size (< 106.0 nm) and high encapsulation efficiency (> 39.54%) were obtained with the optimized nanoparticle formulation and maintained colloidal stability for 6 months.

Conclusions

The use of CCD for the optimization of ZA-loaded PLGA nanoparticles has provided accessibility to the formulation with optimum properties with less experimental procedure and therefore presents an important model for predicting the properties of nanoparticles prepared with PLGA polymer commonly used in the field of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohanraj VJ, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  2. Li S, Wang A, Jiang W, Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer. 2008;8:103.

    Article  CAS  Google Scholar 

  3. Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res. 2000;33:94–101.

    Article  CAS  Google Scholar 

  4. Martins C, Sousa F, Araujo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7:1.

    Article  CAS  Google Scholar 

  5. Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–31.

    Article  CAS  Google Scholar 

  6. Kucukturkmen B, Devrim B, Saka OM, Yilmaz S, Arsoy T, Bozkir A. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Dev Ind Pharm. 2017;43(1):12–21.

    Article  CAS  Google Scholar 

  7. Lee D, Heo DN, Kim HJ, Ko WK, Lee SJ, Heo M, et al. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep. 2016;6:27336.

    Article  CAS  Google Scholar 

  8. Teotia AK, Gupta A, Raina DB, Lidgren L, Kumar A. Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl Mater Interfaces. 2016;8(17):10775–87.

    Article  CAS  Google Scholar 

  9. Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent. 1993;13(1):29–45.

    PubMed  CAS  Google Scholar 

  10. Watzinger F, Luksch J, Millesi W, Schopper C, Neugebauer J, Moser D, et al. Guided bone regeneration with titanium membranes: a clinical study. Br J Oral Maxillofac Surg. 2000;38(4):312–5.

    Article  CAS  Google Scholar 

  11. Bozkir A, Saka OM. Formulation and investigation of 5-FU nanoparticles with factorial design-based studies. Farmaco. 2005;60(10):840–6.

    Article  CAS  Google Scholar 

  12. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.

    Article  CAS  Google Scholar 

  13. Sah AK, Suresh PK, Verma VK. PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artif Cells Nanomed Biotechnol. 2017;45(6):1156–64.

    Article  CAS  Google Scholar 

  14. Ali H, Weigmann B, Collnot EM, Khan SA, Windbergs M, Lehr CM. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa- pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33(5):1085–92.

    Article  CAS  Google Scholar 

  15. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed Pharmacother. 2018;106:1461–8.

    Article  CAS  Google Scholar 

  16. Akl MA, Kartal-Hodzic A, Oksanen T, Ismael HR, Afouna MM, Yliperttula M, et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol. 2016;32:10–20.

    Article  CAS  Google Scholar 

  17. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9.

    Article  CAS  Google Scholar 

  18. Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Convergence. 2016;3(3):1–7.

    Google Scholar 

  20. Chen Z, Liu D, Wang J, Wu L, Li W, Chen J, et al. Development of nanoparticles-in-microparticles system for improved local retention after intra-articular injection. Drug Deliv. 2014;21:342–50.

    Article  CAS  Google Scholar 

  21. Al-Tahami K. Preparation, characterization, and in vitro release of ketoprofen loaded alginate microspheres. Int J App Pharm. 2014;6:4–7.

    Google Scholar 

  22. Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MNV. Design of biodegradable nanoparticles for oral delivery of doxorubicin: ın vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26(3):492–501.

    Article  CAS  Google Scholar 

  23. Kola Srinivas NS, Verma R, Pai Kulyadi G, Kumar L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine. 2016;12:15–28.

    Article  Google Scholar 

  24. Ali H, Singh SK. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design. 2018;36(6):695–709.

  25. Gindy ME, Panagiotopoulos AZ, Prud'homme RK. Composite block copolymer stabilized nanoparticles simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir. 2008;24:83–90.

    Article  CAS  Google Scholar 

  26. Turk CT, Oz UC, Serim TM, Hascicek C. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech. 2014;15(1):161–76.

    Article  CAS  Google Scholar 

  27. Su R, Yang L, Wang Y, Yu S, Guo Y, Deng J, et al. Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB. Int J Nanomedicine. 2017;12:5203–21.

    Article  CAS  Google Scholar 

  28. Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev. 2011;31(5):716–56.

    PubMed  CAS  Google Scholar 

  29. Xie S, Zhu L, Dong Z, Wang X, Wang Y, Li X, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surfaces B Biointerfaces. 2011;83(2):382–7.

    Article  CAS  Google Scholar 

  30. Olejnik C, Falgayrac G, During A, Cortet B, Penel G. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect. Bone. 2016;89:32–9.

    Article  CAS  Google Scholar 

  31. Wang F, Chen L, Jiang S, He J, Zhang X, Peng J, et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design. J Liposome Res. 2014;24(3):171–81.

    Article  CAS  Google Scholar 

  32. Ahmed TA, Aljaeid BM. A potential in situ gel formulation loaded with novel fabricated poly (lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine. 2017;12:1863–75.

    Article  CAS  Google Scholar 

  33. Khajuria DK, Razdan R, Mahapatra DR. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur J Pharm Sci. 2015;66:173–83.

    Article  CAS  Google Scholar 

  34. Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 2013;14(2):585–92.

    Article  CAS  Google Scholar 

  35. Aronhime J, Lifshitz-Liron R. Zoledronic acid crystal forms, zoledronate sodium salt crystal forms, amorphous zoledronate sodium salt, and processes for their preparation. EP1567533B1. 2009.

  36. Alimohammadi S, Salehi R, Amini N, Davaran S. Synthesis and physicochemical characterization of biodegradable PLGA-based magnetic nanoparticles containing amoxicilin. Bull Kor Chem Soc. 2012; 33 (10): 3225–3232.

    Article  CAS  Google Scholar 

  37. Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly (lactic-co-glycolic acid) nanoparticles. J Drug Target. 2015;23(9):832–46.

    Article  CAS  Google Scholar 

  38. Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine. 2007;3(4):246–57.

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Turkish Scientific and Technological Research Council (TÜBİTAK grant number 112S533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berrin Küçüktürkmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saka, O.M., Öz, U.C., Küçüktürkmen, B. et al. Central Composite Design for Optimization of Zoledronic Acid Loaded PLGA Nanoparticles. J Pharm Innov 15, 3–14 (2020). https://doi.org/10.1007/s12247-018-9365-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9365-6

Keywords

Navigation