Skip to main content
Log in

On Possible Changes in the Physical Characteristics of the Aerosol in the Deep Layers of the Atmosphere of Saturn

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

This study is dedicated to determining the values of the physical parameters of cloud particles in the deep layers of Saturn’s atmosphere using the data from remote measurements of the solar radiation field diffusely reflected by the giant planet. In the previous studies, using the effective optical depth method, from the spectral measurements of the geometric albedo of Saturn in 1993 in the wavelength range of 300–1000 nm, a pressure dependence of the aerosol scattering component of the optical depth, i.e., a change in its value with altitude in the atmosphere, was obtained. The analysis of the initial data was performed in the long-wave part of the spectrum in the methane absorption lines of different levels of absorption with the centers at wavelengths of λ = 619, 727, 842, 864, and 887 nm. At certain altitude levels in the deep layers of the atmosphere of the giant planet, the indicated dependence shows the features that possibly reflect changes in the physical characteristics of aerosol. Therefore, the aim of this work was to determine the possible values of the physical parameters of aerosol particles in the deep layers of Saturn’s atmosphere at altitudinal levels with the features noted above. As a result, an increase in the effective radius of cloud particles was observed in the transition from the outer to the deeper layers of the atmosphere: from 1.4 μm in the upper part of atmosphere to 1.83 μm in the altitudinal region with a pressure of 1.0–1.25 bar and up to 2.2–2.4 μm in the region with a pressure of 1.5–2.0 bar. In the latter segment, a decrease by 3.5% was revealed in the real part of the refractive index of aerosol particles. A possible reason for this decrease is the change in the phase state of aerosol particles in the lower and warmer atmospheric layers of Saturn due to the presence of ammonium hydroxide in their composition at a sufficient high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. https://en.wikipedia.org/wiki/Ammonia_solution#cite_note-GESTIS-1

  2. https://www.britannica.com/place/Jupiter-planet/Cloud-composition#ref514772

REFERENCES

  1. O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskij, “On optical properties of the cloud layer of Saturn in the visible region of the spectrum,” Astron. Vestn. 9 (1), 13–21 (1975).

    ADS  Google Scholar 

  2. S. K. Atreya and A. S. Wong, “Coupled clouds and chemistry of the giant planets — A case for multiprobes,” Space Sci. Rev. 116, 121–136 (2005).

    Article  ADS  Google Scholar 

  3. J. W. Chamberlain, “The atmosphere of Venus near her cloud tops,” Astrophys. J. 141, 1184–1205 (1965).

    Article  ADS  Google Scholar 

  4. L. N. Fletcher, K. H. Baines, T. W. Momary, A. P. Showman, P. G. J. Irwin, G. S. Orton, and S. Merlet, “Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy,” Icarus 214, 510–533 (2011).

    Article  ADS  Google Scholar 

  5. L. N. Fletcher, S. Guerlet, G. S. Orton, R. G. Cosentino, T. Fouchet, P. G. J. Irwin, L. Li, F. M. Flasar, N. Gorius, and R. Morales-Juberias, “Disruption of Saturn’s quasi-periodic equatorial oscillation by the Great Northern Storm,” Nature Astron. 1. 765–770 (2017).

    Article  ADS  Google Scholar 

  6. D. L. Hildenbrand and W. F. Giauque, “Ammonium oxide and ammonium hydroxide. Heat capacities and thermodynamic properties from 15 to 300°K,” J. Am. Chem. Soc. 75, 2811–2818 (1953).

    Article  Google Scholar 

  7. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300- to 1000-nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  8. E. Karkoschka and M. G. Tomasko, “Saturn’s vertical and latitudinal cloud structure 1991–2004 from HST imaging in 30 filters,” Icarus 179, 195–221 (2005).

    Article  ADS  Google Scholar 

  9. K. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus 33, 217–232 (1978).

    Article  ADS  Google Scholar 

  10. D. X. Kerola, H. P. Larson, and M. G. Tomasko, “Analysis of the near-IR spectrum of Saturn: A comprehensive radiative transfer model of its middle and upper troposphere,” Icarus 127, 190–212 (1997).

    Article  ADS  Google Scholar 

  11. G. F. Lindal, “The atmosphere of Neptune: An analysis of radio occultation data with Voyager 2,” Astron. J. 103, 967–982 (1992).

    Article  ADS  Google Scholar 

  12. O. Muñoz, F. Morena, A. Molina, D. Grodent, J. C. Gérard, and V. Dols, “Study of the vertical structure of Saturn’s atmosphere using HST/WFPC2 images,” Icarus 169, 413–428 (2004).

    Article  ADS  Google Scholar 

  13. A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).

    ADS  Google Scholar 

  14. A. V. Morozhenko, “On the vertical structure of cloud layers in the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 9 (6), 1–19 (1993).

    ADS  Google Scholar 

  15. A. V. Morozhenko and A. S. Ovsak, “On the probable change of the radius and nature of aerosol particles in the deep layers of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 33, 88–93 (2017).

    Article  ADS  Google Scholar 

  16. A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    Article  ADS  Google Scholar 

  17. A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).

    Article  ADS  Google Scholar 

  18. A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 43–50 (2015).

    Article  ADS  Google Scholar 

  19. A. S. Ovsak, “On determining the vertical structure of the aerosol component in the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 34, 37–51 (2018).

    Article  ADS  Google Scholar 

  20. A. S. Ovsak, “The altitudinal dependence of aerosol volume scattering coefficient in the atmosphere of Saturn in 1993,” in Proc. 49th Lunar and Planetary Science Conf. (LPSC2018), Woodlands, TX, Mar. 19–23, 2018 (Lunar and Planetary Inst., Houston, TX, 2018), abstract No. 1069.

  21. S. Pérez-Hoyos, A. Sánchez-Lavega, R. G. French, and J. F. Rojas, “Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003),” Icarus 176, 155–174 (2005).

    Article  ADS  Google Scholar 

  22. M. T. Roman, D. Banfield, and P. J. Gierasch, “Saturn’s cloud structure inferred from Cassini ISS,” Icarus 225, 93–110 (2013).

    Article  ADS  Google Scholar 

  23. A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos, “The three-dimensional structure of Saturn’s equatorial jet at cloud level,” Icarus 187, 510–519 (2007).

    Article  ADS  Google Scholar 

  24. R. Santer and A. Dollfus, “Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn,” Icarus 48, 496–518 (1981).

    Article  ADS  Google Scholar 

  25. L. A. Sromovsky, K. H. Baines, and P. M. Fry, “Saturn’s Great Storm of 2010–2011: Evidence for ammonia and water ices from analysis of VIMS spectra,” Icarus 226, 402–408 (2013).

    Article  ADS  Google Scholar 

  26. L. A. Sromovsky, K. H. Baines, P. M. Fry, and T. W. Momary, “Cloud clearing in the wake of Saturn’s Great Storm of 2010–2011 and suggested new constraints on Saturn’s He/H2 ratio,” Icarus 276, 141–162 (2016).

    Article  ADS  Google Scholar 

  27. T. Temma, N. J. Chanover, A. A. Simon-Miller, et al., “Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging,” Icarus 175, 464–489 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to sincerely thank A.V. Morozhenko for the useful advice and comments. I am grateful to the reviewer for the valuable recommendations regarding the draft of the paper, which significantly improved the presentation of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsak.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsak, A.S. On Possible Changes in the Physical Characteristics of the Aerosol in the Deep Layers of the Atmosphere of Saturn. Kinemat. Phys. Celest. Bodies 35, 28–37 (2019). https://doi.org/10.3103/S0884591319010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591319010057

Navigation