Skip to main content
Log in

Predictions and Analyses on the Growth Behavior of Oxide Scales Formed on Ferritic–Martensitic in Supercritical Water

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

For 9–12Cr ferritic–martensitic steels in supercritical water, the dependencies of the thicknesses of three oxide layers (diffusion, inner, and outer layers) on each of seven principal independent variables were separately investigated using three supervised artificial neural networks (ANN) and fuzzy curve analyses. The latter were employed to evaluate the relative significances of independent variables, indicating that on the whole, temperature and exposure time are the most important variables, while the oxide dispersion strengthening (ODS) comes in the first place for the thickness of the diffusion layer. A thicker diffusion layer occurs easily at intermediate temperature approximately 600 °C and/or on ODS steels, due to higher growth rate of the barrier layer than that of the outer layer. The periodic growth of the diffusion layer, including the “shrinking”/“thickening” stages, was revealed by ANN prediction, which may be the basic cause of periodic pore-assembled layers within the inner layer. Finally, the physicochemical basis of classical point defect model was extended to describe the growth of oxide scales for explaining the ANN predictions at the atomic level. The growth of the inner layer into the metal is attributed to the inward transport of oxide ions (actually via outward transport of oxygen vacancies), while the outward transport of cations through the inner layer via a cation vacancy mechanism or as interstitials results in the thickening of the outer layer. The periodic variation in oxygen potentials at the diffusion/inner layer interface is responsible for the periodic growth of the diffusion layer. The iron caves at the inner–diffusion interface left behind by the generation reaction of cation interstitials may be the intrinsic sources of pores within the inner layer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Viswanathan, J. Sarver, and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 255–274 (2006).

    Article  Google Scholar 

  2. G. R. Holcomb, Oxidation of Metals 82, 271–295 (2014).

    Article  Google Scholar 

  3. S. Bsat, B. Xiao, X. Huang, and S. Penttilä, Oxidation of Metals 89, 151–163 (2018).

    Article  Google Scholar 

  4. Nuclear Energy Research Advisory Committee and Gen IV International Forum: A Technology Roadmap for Generation IV Nuclear Energy Systems, DOE, US (2002).

  5. P. Ampornrat, G. Gupta, and G. S. Was, Journal of Nuclear Materials 395, 30–36 (2009).

    Article  Google Scholar 

  6. G. S. Was, et al. Journal of Nuclear Materials 371, 176–201 (2007).

    Article  Google Scholar 

  7. K. Yin, S. Qiu, R. Tang, Q. Zhang, and L. Zhang, Journal of Supercritical Fluids 50, 235–239 (2009).

    Article  Google Scholar 

  8. L. Tan, Y. Yang, and T. R. Allen, Corrosion Science 48, 3123–3138 (2006).

    Article  Google Scholar 

  9. P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 1–17 (2007).

    Article  Google Scholar 

  10. T. R. Allen, Y. Chen, X. Ren, K. Sridharan, L. Tan, G. S. Was, E. West, and D. Guzonas, in Comprehensive Nuclear Materials, eds. R. J. M. Konings, (Elsevier, Oxford, 2012), p. 279–326.

  11. Y. H. Li, S. Z. Wang, X. D. Li, and J. M. Lu, Advanced Materials Research 908, 67–71 (2014).

    Article  Google Scholar 

  12. L. Sun and W. P. Yan, Advances in Materials Science and Engineering 12, (2017).

  13. Z. Zhang, Z. F. Hu, L. F. Zhang, K. Chen, and P. M. Singh, Journal of Nuclear Materials 498, 89–102 (2018).

    Article  Google Scholar 

  14. Y. Li, et al., Corrosion Science 135, 136–146 (2018).

    Article  Google Scholar 

  15. N. Q. Zhang, Z. L. Zhu, H. Xu, X. P. Mao, and J. Li, Corrosion Science 103, 124–131 (2016).

    Article  Google Scholar 

  16. L. Tan, X. Ren, and T. R. Allen, Corrosion Science 52, 1520–1528 (2010).

    Article  Google Scholar 

  17. Z. L. Zhu, H. Xu, D. F. Jiang, and N. Q. Zhang, Oxidation of Metals 86, 483–496 (2016).

    Article  Google Scholar 

  18. J. Bischoff, A. T. Motta, C. Eichfeld, R. J. Comstock, G. Cao, and T. R. Allen, Journal of Nuclear Materials 441, 604–611 (2013).

    Article  Google Scholar 

  19. J. Bischoff and A. T. Motta, Journal of Nuclear Materials 424, 261–276 (2012).

    Article  Google Scholar 

  20. N. Zhang, H. Xu, B. Li, Y. Bai, and D. Liu, Corrosion Science 56, 123–128 (2012).

    Article  Google Scholar 

  21. J. Bischoff and A. T. Motta, Journal of Nuclear Materials 430, 171–180 (2012).

    Article  Google Scholar 

  22. J. Bischoff, A. T. Motta, and R. J. Comstock, Journal of Nuclear Materials 392, 272–279 (2009).

    Article  Google Scholar 

  23. R. Rojas, Neural Networks: A Systematic Introduction (Springer, Berlin, 1996_.

    Book  Google Scholar 

  24. J. Shi, J. Wang, and D. D. Macdonald, Corrosion Science 92, 217–227 (2015).

    Article  Google Scholar 

  25. M. K. Cavanaugh, R. G. Buchheit, and N. Birbilis, Corrosion Science 52, 3070–3077 (2010).

    Article  Google Scholar 

  26. L. Yinghua and G. A. Cunningham, IEEE Transactions on Fuzzy Systems 3, 190–198 (1995).

    Article  Google Scholar 

  27. A. H. Sung, Expert Systems with Applications 15, 405–411 (1998).

    Article  Google Scholar 

  28. Y. Li, T. Xu, S. Wang, B. Fekete, J. Yang, J. Yang, J. Qiu, A. Xu, J. Wang, and Y. Xu, Materials 12, 409 (2019).

    Article  Google Scholar 

  29. W. H. Gao, X. L. Guo, Z. Shen, and L. F. Zhang, Journal of Nuclear Materials 486, 1–10 (2017).

    Article  Google Scholar 

  30. J. Yuan, X. Wu, W. Wang, S. Zhu, and F. Wang, Oxidation of Metals 79, 541–551 (2013).

    Article  Google Scholar 

  31. F. Hamdani and T. Shoji, Oxidation of Metals 89, 319–330 (2018).

    Article  Google Scholar 

  32. Y. Li, D. D. Macdonald, J. Yang, and S. Wang, (2018) (in preparation).

  33. V. V. Sagaradze, et al., Journal of Nuclear Materials 295, 265–272 (2001).

    Article  Google Scholar 

  34. J. H. Lee, et al., Journal of Nuclear Materials 417, 1225–1228 (2011).

    Article  Google Scholar 

  35. Y. Li, et al., International Journal of Hydrogen Energy 41, 15764–15771 (2016).

    Article  Google Scholar 

  36. L. Tan, M. T. Machut, K. Sridharan, and T. R. Allen, Journal of Nuclear Materials 371, 161–170 (2007).

    Article  Google Scholar 

  37. A. Rahmel and J. Tobolski, Corrosion Science 5, 333–346 (1965).

    Article  Google Scholar 

  38. X. Zhong, X. Wu, and E.-H., Han, The Journal of Supercritical Fluids 72, 68–77 (2012).

    Article  Google Scholar 

  39. H. Li, Q. Cao, and Z. Zhu, Corrosion Engineering, Science and Technology 53, 293–301 (2018).

    Article  Google Scholar 

  40. C. Y. Chao, L. F. Lin, and D. D. Macdonald, Journal of the Electrochemical Society 128, 1187–1194 (1981).

  41. J. Robertson, Corrosion Science 32, 443–465 (1991).

    Article  Google Scholar 

  42. L. Tan, Y. Yang, and T. R. Allen, Corrosion Science 48, 4234–4242 (2006).

    Article  Google Scholar 

  43. H. Zhou, J. Qu, and M. Cherkaoui, Mechanics of Materials 42, 63–71 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are happy to acknowledge financial support from the National Key Research and Development Program of China (No. 2016YFC0801904), DOE-NEUP Award (DE-NE0008541) of USA, the Fundamental Research Funds for the Central Universities [xjj2018201] and [xjj2018006] and the Projects from National Natural Science Foundation of China [51871179]. Yanhui Li also appreciates China Scholarship Council (CSC) to support his study at University of California at Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuzhong Wang or Digby D. Macdonald.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, T., Wang, S. et al. Predictions and Analyses on the Growth Behavior of Oxide Scales Formed on Ferritic–Martensitic in Supercritical Water. Oxid Met 92, 27–48 (2019). https://doi.org/10.1007/s11085-019-09912-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09912-2

Keywords

Navigation