Skip to main content
Log in

On the search of smallest QC-LDPC code with girth six and eight

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, a new and simple method for the construction of Girth-6 (J,L) Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes is proposed. The method is further extended to the search of Girth-8 QC-LDPC codes with base matrices of order 3 × L and 4 × L. The construction is based on three different forms of exponent matrices and the parameters α, p, and q which satisfy the necessary algebraic conditions for a QC-LDPC code having girth 6 and 8. The proposed (J,L) QC-LDPC codes with girth at least six have optimal circulant permutation matrix (CPM) size for the cases where q = α + 1. Moreover, most of the girth-8 QC-LDPC codes searched by the proposed method have smaller CPM size than the existing codes of the same girth. In several cases, the method gives more than one exponent matrices for a code, as most of the existing methods cannot do so. Besides this, the proposed method not only search the QC-LDPC codes with smaller CPM size but also takes much less time than the existing search based methods to search code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallager, R.G.: Low-density parity-check codes. IRE Transactions on Information Theory. 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  2. Mackay, D.J.C., Neal, R.M.: Near shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645–1645 (1996)

    Article  Google Scholar 

  3. Berrou C., Glavieus A., Thitimajshima P.: Near shannon limit error-correcting coding and decoding: turbo-codes 1. IEEE International Conference on Communications. In: Proceeding of IEEE International Conference on Communications. (1993). 10.1109/icc.1993.397441

  4. Myung, S., Yang, K.: A combining method of quasi-cyclic LDPC codes by the chinese remainder theorem. IEEE Commun. Lett. 9(9), 823–825 (2005)

    Article  Google Scholar 

  5. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory. 27(5), 533–547 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bajpai, A., Srirutchataboon, G., Kovintavewat, P.: Wuttisittikulkij L: A new construction method for large girth quasi-cyclic LDPC codes with optimized lower bound using chinese remainder theorem. Wirel. Pers. Commun. 91(1), 369–381 (2016)

    Article  Google Scholar 

  7. Gholami, M., Gholami, Z.: An explicit method to generate some QC-LDPC codes with girth 8. Iranian Journal of Science and Technology, Transactions A: Science. 40(2), 145–149 (2016)

    Article  MathSciNet  Google Scholar 

  8. Karimi, M., Banihashemi, A.H.: On the girth of quasi-cyclic protograph LDPC codes. IEEE Trans. Inf. Theory. 59(7), 4542–4552 (2013)

    Article  MathSciNet  Google Scholar 

  9. Mellinger, K.E.: LDPC codes from triangle-free line sets. Des. Codes Crypt. 32(1–3), 341–350 (2004)

    Article  MathSciNet  Google Scholar 

  10. Sakzad, A., Sadeghi, M., Panario, D.: Codes with girth 8 tanner graph representation. Des. Codes Crypt. 57(1), 71–81 (2010)

    Article  MathSciNet  Google Scholar 

  11. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: Efficient search of girth-optimal QC-LDPC codes. IEEE Trans. Inf. Theory. 62(4), 1552–1564 (2016)

    Article  MathSciNet  Google Scholar 

  12. Tasdighi, A., Banihashemi, A.H., Sadeghi, M.R.: Symmetrical constructions for regular girth-8 QC-LDPC codes. IEEE Trans. Commun. 65(1), 14–22 (2017)

    Google Scholar 

  13. Wang, Y., Yedidia, J.S., Draper, S.C.: Construction of high-girth QC-LDPC codes. In: Proceeding of 5th International Symposium on Turbo Codes and Related Topics (2007). https://doi.org/10.1109/turbocoding.2008.4658694

    Chapter  Google Scholar 

  14. Zhang, G., Sun, R., Wang, X.: Several explicit constructions for (3, L) QC-LDPC codes with girth at least eight. IEEE Commun. Lett. 17(9), 1822–1825 (2013)

    Article  Google Scholar 

  15. Zhang, J., Zhang, G.: Deterministic girth-eight QC-LDPC codes with large column weight. IEEE Communications Letters. 18(4), 656–659 (2014)

    Article  Google Scholar 

  16. Zhang, L., Li, B., Cheng, L.: Constructions of QC LDPC codes based on integer sequences. SCIENCE CHINA Inf. Sci. 57(6), 1–14 (2014)

    Article  Google Scholar 

  17. Fossorier, M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory. 50(8), 1788–1793 (2004)

    Article  MathSciNet  Google Scholar 

  18. Li, L., Li, H., Li, J., Jiang, H.: Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets. Optoelectron. Lett. 13(5), 358–362 (2017)

    Article  Google Scholar 

  19. O'sullivan, M.E.: Algebraic construction of sparse matrices with large girth. IEEE Trans. Inf. Theory. 52(2), 718–727 (2006)

    Article  MathSciNet  Google Scholar 

  20. Vandendriessche, P.: Some low-density parity-check codes derived from finite geometries. Des. Codes Crypt. 54(3), 287–297 (2010)

    Article  MathSciNet  Google Scholar 

  21. Yuan, J., Liang, M., Wang, Y., Lin, J., Pang, Y.: A novel construction method of QC-LDPC codes based on CRT for optical communications. Optoelectron. Lett. 12(3), 208–211 (2016)

    Article  Google Scholar 

  22. Zhang, G., Sun, R., Wang, X.: Construction of girth-eight QC-LDPC codes from greatest common divisor. IEEE Commun. Lett. 17(2), 369–372 (2013)

    Article  Google Scholar 

  23. Bocharova, I.E., Hug, F., Johannesson, R.: Searching for voltage graph-based LDPC tailbiting codes with large girth. IEEE Trans. Inf. Theory. 58(4), 2265–2279 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kim, K.J., Chung, J.H., Yang, K.: Bounds on the size of parity-check matrices for quasi-cyclic low-density parity-check codes. IEEE Trans. Inf. Theory. 59(11), 7288–7298 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Gupta, M. & Bhullar, J.S. On the search of smallest QC-LDPC code with girth six and eight. Cryptogr. Commun. 12, 711–723 (2020). https://doi.org/10.1007/s12095-019-00405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-019-00405-2

Keywords

MSC

Navigation