Skip to main content
Log in

Parameter identification of engineering problems using a differential shuffled complex evolution

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

An accurate mathematical model has a vital role in controlling and synchronization of different systems. But generally in real-world problems, parameters are mixed with mismatches and distortions. In this paper, an improved shuffled complex evolution (SCE) is proposed for parameter identification of engineering problems. The SCE by employing parallel search efficiently finds neighborhoods of the optimal point. So it carries out exploration in a proper way. But its drawback is due to exploitation stages. The SCE cannot converge accurately to an optimal point, in many cases. The current study focuses to overcome this drawback by inserting a shrinkage stage to an original version of SCE and presents a powerful global numerical optimization method, named the differential SCE. The efficacy of the proposed algorithm is first tested on some benchmark problems. After achieving satisfactory performance on the test problems, to demonstrate the applicability of the proposed algorithm, it is applied to ten identification problems includes parameter identification of ordinary differential equations and chaotic systems. Practical experiences show that the proposed algorithm is very effective and robust so that it produces similar and promising results over repeated runs. Also, a comparison against other evolutionary algorithms reported in the literature demonstrates a significantly better performance of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahandani MA (2014) A diversified shuffled frog leaping: an application for parameter identification. Appl Math Comput 239:1–16

    MathSciNet  MATH  Google Scholar 

  • Ahandani MA, Alavi-Rad H (2012) Opposition-based learning in the shuffled differential evolution algorithm. Soft Comput 16:1303–1337

    Google Scholar 

  • Ahandani MA, Alavi-Rad H (2015) Opposition-based learning in shuffled frog leaping: an application for parameter identification. Inf Sci 291:19–42

    Google Scholar 

  • Ahandani MA, Kharrati H (2018) Chaotic shuffled frog leaping algorithms for parameter identification of fractional-order chaotic systems. J Exp Theor Artif Intell 30:561–581

    Google Scholar 

  • Ahandani MA, Banimahd R, Shrjoposht NP (2011) Solving the parameter identification problem using shuffled frog leaping with opposition-based initialization. In: 1st international eConference on computer and knowledge engineering, Mashahd, Iran, pp 49–53

  • Ahandani MA, Vakil-Baghmisheh M-T, Talebi M (2014) Hybridizing local search algorithms for global optimization. Comput Optim Appl 59:725–748

    MathSciNet  MATH  Google Scholar 

  • Alfi A (2011) PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Autom Sin 37:541–549

    MATH  Google Scholar 

  • Alonso S, Jimenez J, Carmona H, Galvan B, Winter G (2005) Performance of a flexible evolutionary algorithm. In: The 2005 IEEE congress on evolutionary computation CEC2005, Edinburgh, UK

  • Arani BO, Mirzabeygi P, Panahi MS (2013) An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol Comput 11:1–15

    Google Scholar 

  • Auger A, Kern S, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE congress on evolutionary computation CEC2005, Edinburgh, UK

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006a) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657

    Google Scholar 

  • Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006b) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657

    Google Scholar 

  • Bui LT, Shan Y, Qi F, Abbass HA (2005) Comparing two versions of differential evolution in real parameter optimization. In: The 2005 IEEE congress on evolutionary computation, CEC 2005

  • Ceylan H, Gopalakrishnan K (2014a) Finite element based hybrid evolutionary optimization approach to solving rigid pavement inversion problem. Eng Comput 30:1–13

    Google Scholar 

  • Ceylan H, Gopalakrishnan K (2014b) Finite element based hybrid evolutionary optimization approach to solving rigid pavement inversion problem. Eng Comput Germany 30:1–13

    Google Scholar 

  • Chakri A, Khelif R, Benouaret M, Yang XS (2017) New directional bat algorithm for continuous optimization problems. Expert Syst Appl 69:159–175

    Google Scholar 

  • Chang WD (2007) Nonlinear system identification and control using a real-coded genetic algorithm. Appl Math Model 31:541–550

    MATH  Google Scholar 

  • Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res 33:859–871

    MATH  Google Scholar 

  • Chen Z, Wu L, Lin P, Wu Y, Cheng S (2016) Parameters identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy. Appl Energy 182:47–57

    Google Scholar 

  • Chu W, Gao X, Sorooshian S (2010) Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: application to the calibration of the Sacramento soil-moisture accounting model. Water Resour Res. https://doi.org/10.1029/2010WR009224

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Google Scholar 

  • Ding Y, Wang C, Chaos M, Chen R, Lu S (2016) Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresour Technol 200:658–665

    Google Scholar 

  • Dotto CBS, Mannina G, Kleidorfer M, Vezzaro L, Henrichs M, McCarthy DT, Freni G, Rauch W, Deletic (2012) A Comparison of different uncertainty techniques in urban stormwater quantity and quality modeling. Water Res 46:2545–2558

    Google Scholar 

  • Duan Q, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031

    Google Scholar 

  • Duan Q, Gupta VK, Sorooshian S (1993) A shuffled complex evolution approach for effective and efficient global minimization. J Optimz Theory Appl 76:501–521

    MathSciNet  MATH  Google Scholar 

  • Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–286

    Google Scholar 

  • Gomes RCM, Vitorino MA, de Rossiter Corrêa MB, Fernandes DA, Wang R (2017) Shuffled complex evolution on photovoltaic parameter extraction: a comparative analysis. IEEE Trans Sustain Energy 8:805–815

    Google Scholar 

  • Gotmare A, Bhattacharjee SS, Patidar R, George NV (2017) Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol Comput 32:68–84

    Google Scholar 

  • Guo J, Zhou J, Song L, Zou Q, Zeng X (2013a) Uncertainty assessment and optimization of hydrological model with the Shuffled Complex Evolution Metropolis algorithm: an application to artificial neural network rainfall-runoff model. Stoch Env Res Risk A 27:985–1004

    Google Scholar 

  • Guo J, Zhou J, Zou Q, Liu Y, Song L (2013b) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27:2923–2946

    Google Scholar 

  • Ho WH, Chou JH, Guo CY (2010) Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dynam 61(1–2):29–41

    MathSciNet  MATH  Google Scholar 

  • Jiang B, Wang BW (2000) Parameter estimation of nonlinear system based on genetic algorithms. Control Theor Appl 17:150–152

    MATH  Google Scholar 

  • Kan G, He X, Ding L, Li J, Hong Y, Zuo D, Liang K (2018) Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method. Eng Optim 50:106–119

    MathSciNet  Google Scholar 

  • Kan G, He X, Li J, Ding L, Hong Y, Zhang H, Zhang M (2019) Computer aided numerical methods for hydrological model calibration: an overview and recent development. Arch Comput Method Eng 26:35–59

    MathSciNet  Google Scholar 

  • Khalik MA, Sherif M, Saraya S, Areed F (2007) Parameter identification problem: real-coded GA approach. Appl Math Comput 187:1495–1501

    MATH  Google Scholar 

  • Khalik MA, Sherif M, Saraya S, Areed F (2010) Solving parameter identification problem by hybrid particle swarm optimization. In: Proceedings of the international multiconference od engineer and computer scientists, Hong Kong

  • Li L-L, Wang L, Liu L-h (2006) An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Appl Math Comput 179:135–146

    MathSciNet  MATH  Google Scholar 

  • Liong S-Y, Atiquzzaman M (2004) Optimal design of water distribution network using shuffled complex evolution. J Inst Eng 44:93–107

    Google Scholar 

  • Liu A, Zahara E, Yang M-T (2012) A modified NM-PSO method for parameter estimation problems of models. J Appl Math. https://doi.org/10.1155/2012/530139

    Article  MathSciNet  MATH  Google Scholar 

  • Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11–24

    Google Scholar 

  • Malla RN, Ramesh RK, Ramana NV (2013) A unit commitment solution using differential evolution and economic dispatch using shuffled complex evolution with principal component analysis. Int Rev Model Simulat 27:2923–2946

    Google Scholar 

  • Mariani VC, Luvizotto LGJ, Guerra FA, Coelho LDS (2011) A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl Math Comput 217:5822–5829

    MathSciNet  MATH  Google Scholar 

  • Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs, AI series. Springer, New York

    MATH  Google Scholar 

  • Molina D, Herrera F, Lozano M (2005) Adaptive local search parameters for real-coded memetic algorithms. In: The 2005 IEEE congress on evolutionary computation CEC2005, Edinburgh, UK

  • Nyarko EK, Scitovski R (2004) Solving the parameter identification problem of mathematical model using genetic algorithm. Appl Math Comput 153:651–658

    MathSciNet  MATH  Google Scholar 

  • Qi W, Zhang C, Fu G, Zhou H (2016) Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration. J Hydrol 533:213–223

    Google Scholar 

  • Suganthan PN, Hansen N, Liang J J, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report Report #2005005, Nanyang Technological University, Singapore and IIT Kanpur, India. http://www.ntu.edu.sg/home/EPNSugan/

  • Tigkas D, Christelis V, Tsakiris G (2016) Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model. Environ Proc 3:629–644

    Google Scholar 

  • Wang L, Li WF, Zheng DZ (2001) Estimating model-parameter and tuning controller-parameter by a class of hybrid strategy. Control Decis 16:530–534

    Google Scholar 

  • Wang L, Li LL, Zheng DZ (2003) A class of effective search strategies for parameter estimation of nonlinear systems. Acta Autom Sin 29:953–958

    Google Scholar 

  • Wu X, Guo F, Liu J, Chen W, Wen C (2014) Dynamic modelling and parameter identification of a three-degree-of-freedom spherical actuator. Trans Inst Meas Control 3:14–25

    Google Scholar 

  • Zahara E, Liu (2010) A Solving parameter identification problem by hybrid particle swarm optimization. In: Proceedings of the International multiconference of engineering and computer scientists, Lecture Notes in Engineering and Computer Science, Hong Kong, pp 36–38

  • Zeng N, Wang Z, Zhang H, Alsaadi FE (2016) A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cogn Comput 8:143–152

    Google Scholar 

  • Zhao F, Zhang J, Wang J, Zhang C (2015) A shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problem. Int J Comput Integr Manuf 28:1220–1235

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Kharrati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourasghar, B., Ahandani, M.A. & Kharrati, H. Parameter identification of engineering problems using a differential shuffled complex evolution. Artif Intell Rev 53, 2749–2782 (2020). https://doi.org/10.1007/s10462-019-09745-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09745-0

Keywords

Navigation