Skip to main content
Log in

Models prediction of particles ratio in pp collisions at √s = 900 GeV

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The ratio of particles’ yield: π/π+, K/K+, \(\bar{p}\)/\(p\), and \(p /\pi\), \(K /\pi\) and \(p /K\) is measured as a function of pseudorapidity (η) in pp collisions at √s = 0.9 TeV using different hadron production models. The ratio measured in the three different transverse momentum (pT) regions was: 0 < pT < 0.8 GeV/c, 0.8 < pT < 1.2 GeV/c and pT > 1.2 GeV/c and at pseudorapidity regions of 3.0 < η < 4.5 and 2.5 < η < 4.5. The results are compared with measurements of LHCb experiment. The π/π+ ratio from different MC generators at different transverse momentum and rapidity regions are in wholesome agreement with the measurements while K/K+ and \(\bar{p}\)/\(p\) ratios are in suitable agreement with data in some region of pT and η, but mostly the models do not depict the data adequately. Similarly, for the different particle ratios, the model predictions and the experimental data have similar results in some regions, but none of the model completely describes all experimental measurements. Such comparisons will help to tune MC generators used for hadrons production studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N Hermann, et al. Annu. Rev. Nucl.Part. Sci. 49 581 (1999)

    Article  ADS  Google Scholar 

  2. H. Satz, Rep. Prog. Phys.63 151 (2000)

    Article  Google Scholar 

  3. G C Rossi and G Veneziano Nucl. Phys. B123 507 (1977)

    Article  ADS  Google Scholar 

  4. A Capella et al. Phys. Rep.236 225 (1994)

    Article  ADS  Google Scholar 

  5. A B Kaidalov and K A Ter-Martirosyan Sov. J. Nucl. Phys.39 1545 (1984)

    Google Scholar 

  6. X Artru Nucl. Phys. B85 442 (1975)

  7. M Imachi, S Otsuki and F Toyoda Prog. Theor. Phys.52 341 (1974)

    Article  ADS  Google Scholar 

  8. M Imachi, S Otsuki and F Toyoda Prog. Theor. Phys.54 280 (1975)

    Article  ADS  Google Scholar 

  9. B Z Kopeliovich Sov. J. Nucl. Phys.45 1078 (1987)

  10. B Z Kopeliovich, B Povh Z. Phys. C75 693 (1997)

    Article  Google Scholar 

  11. B Z Kopeliovich and B Povh Phys. Lett. B446 321 (1999)

    Article  ADS  Google Scholar 

  12. D Kharzeev Phys. Lett. B378 238 (1996)

  13. C Merino et al. Eur. Phys. J. C54 577 (2008)

    Article  ADS  Google Scholar 

  14. C Merino, M M Ryzhinskiy, Yu M Shabelski arXiv:0906.2659

  15. S E Vance and M Gyulassy Phys. Rev. Lett.83 1735 (1999)

    Article  ADS  Google Scholar 

  16. G C Rossi, G Veneziano Nucl. Phys. B123 507 (1977)

    Article  ADS  Google Scholar 

  17. A B Kaidalov, K A Ter-Martirosyan Sov. J. Nucl. Phys.40 135 (1984)

    Google Scholar 

  18. X Artru Nucl. Phys. B85 442 (1975)

  19. M Imachi, S Otsuki, F Toyoda Prog. Theor. Phys.52 1061 (1974)

    Article  ADS  Google Scholar 

  20. M Imachi, S Otsuki, F Toyoda Prog. Theor. Phys.54 280 (1975)

    Article  ADS  Google Scholar 

  21. B Z Kopeliovich Sov. J. Nucl. Phys.45 1078 (1987)

  22. B Kopeliovich, B. Povh Z. Phys. C75 693 (1997)

    Article  Google Scholar 

  23. B Kopeliovich, B Povh Phys. Lett. B446 321 (1999)

    Article  ADS  Google Scholar 

  24. D Kharzeev Phys. Lett. B378 238 (1996)

  25. G H Arakelyan et al. Eur. Phys. J. C54 577 (2008)

    Article  ADS  Google Scholar 

  26. C Merino, M M Ryzhinskiy, Y M Shabelski, arXiv:0906.2659

  27. S E Vance and M Gyulassy Phys. Rev. Lett.83 1735 (1999)

    Article  ADS  Google Scholar 

  28. C Merino, C Pajares, M M Ryzhinskiy, Y M Shabelski, Odderon effects in pp collisions: predictions for LHC energies, arXiv:0906.2659

  29. C Merino, C Pajares, M M Ryzhinskiy, Y M Shabelski, Pomeron and odderon contributions at LHC energies, arXiv:1007.3206

  30. L Lukaszuk, B Nicolescu Lett. Nuovo Cimento8 405 (1973)

    Article  Google Scholar 

  31. R Avila, P Gauron, B Nicolescu Eur. Phys. J. C49 581 (2007)

    Article  ADS  Google Scholar 

  32. R Aaij et al. (LHCb Collaboration) Eur. Phys. J. C72 2168 (2012)

    ADS  Google Scholar 

  33. M Hladik, H J Drescher, S Ostapchenko, T Pierog, and K. Werner et al. Phys. Rev. Lett.86 3506 (2001)

    Article  ADS  Google Scholar 

  34. T Pierog, Iu Karpenko, S Porteboeuf, and K Werner arXiv:1011.3748v1

  35. K Werner and T Pierog, Proc. 31stICRC, LODZ 2009

  36. K Werner et al. Phys. Rev. C74 044902 (2006)

    Article  ADS  Google Scholar 

  37. K Werner Phys. Rev. Lett.98 152301 (2007)

  38. M. Ajaz et al. Mod. Phys. Lett. A34 1950100 (2019)

    Article  ADS  Google Scholar 

  39. Y. Ali et al. Int. J. Theo. Phys.58 931 (2019)

    Article  Google Scholar 

  40. M. Ajaz et al. Mod. Phys. Lett. A34 1950090 (2019)

    Article  ADS  Google Scholar 

  41. U. Tabassam et al. Int. J. Mod. Phys. E27 1850036 (2018)

    Article  ADS  Google Scholar 

  42. P. Christiansen et al. (ALICE Collaboration) Nucl. Phys. A926 264 (2014)

    Google Scholar 

  43. T Pierog and K Werner Nucl. Phys. Proc. Suppl.196 102 (2009)

    Article  ADS  Google Scholar 

  44. T Pierog et al. Phys. Rev. C92 034906 (2015)

    Article  ADS  Google Scholar 

  45. S Ostapchenko Phys. Rev. D83 014018 (2011)

  46. J Engel, T K Gaisser, T Stanev and P Lipari Phys. Rev. D46 5013 (1992)

    Article  Google Scholar 

  47. R S Fletcher, T K Gaisser, P Lipari and T Stanev Phys. Rev. D50 5710 (1994)

    Article  Google Scholar 

  48. E -J Ahn, R Engel, T K Gaisser, P Lipari and T Stanev Phys. Rev. D80 094003 (2009)

  49. M L Good, W D Walker Phys. Rev.120 1857 (1960)

    Article  ADS  Google Scholar 

  50. R Engel, T K Gaisser, F Riehn and T Stanev Proc. 34th Int. Cosmic Ray Conf., The Hague (Netherlands), 1 1313 (2015)

Download references

Acknowledgements

This work is supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ajaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Khan, R., Bilal, M. et al. Models prediction of particles ratio in pp collisions at √s = 900 GeV. Indian J Phys 94, 719–724 (2020). https://doi.org/10.1007/s12648-019-01504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01504-9

Keywords

PACS Nos.

Navigation