Skip to main content
Log in

Fabrication of sub-50 nm Au nanowires using thermally curing nanoimprint lithography

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

As narrow as 50 nm metal nanowire array patterns were successfully fabricated by nanoimprint lithography (NIL) using thermally curable monomer based resin. Compared to conventional hot embossing lithography, which has used thermoplastic polymers such as PMMA as an imprint resin and thus process temperature and pressure are over 180°C and 50 bar, respectively, thermally curable monomer based resin enabled imprint process at relatively lower temperature (120°C) and pressure (20 bar). Due to the highly fluidic nature of monomer based liquid phase resin, residual layer was not observed after imprinting. Imprinted resist pattern was then treated with oxygen plasma for 5 seconds and 5 nm of Ti layer and 15 nm of Au layer was deposited by e-beam evaporation. The imprinted resist pattern was lifted-off by dipping into an organic solvent, such as acetone. As the result, as narrow as 50 nm Au nanowire array pattern with area of 30 mm × 40 mm was fabricated on a Si substrate. 30 mm × 40 mm of nanowire pattern area was not limited by nanoimprint process, but the laser interference lithography process, which was used to fabricated the master template for imprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. Murray, M. Scheinfen, M. Isaacson, and I. Adesida, J. Vac. Sci. Technol. B 3, 367 (1985).

    Article  Google Scholar 

  2. A. M. Hawryluk and L. G. Seppala, J. Vac. Sci. Technol. B 6, 2162 (1988).

    Article  CAS  Google Scholar 

  3. W. Hinsberg, F. A. Houle, J. Hoffnagle, M. Sanchez, G. Wallraff, and M. Morrison, J. Vac. Sci. Technol. B 16, 3689 (1998).

    Article  CAS  Google Scholar 

  4. S. Y. Chou, P. R Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).

    Article  CAS  Google Scholar 

  5. M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon and S. Y. Chou, Nanotechnol. 16, 1058 (2005).

    Article  CAS  Google Scholar 

  6. H. Lee, S. Hong, K. Yang, and K. Choi, Appl. Phys. Lett. 88, 143112 (2006).

    Article  Google Scholar 

  7. P. Carlberg, M. Graczyk, E.-L. Sarwe, I. Maximov, M. Beck, and L. Montelius, Microelectron. Eng. 67–68, 203 (2003).

    Article  Google Scholar 

  8. B. Heidari, I. Maximov, and L. Montelius, J. Vac. Sci. Technol. B 18, 3557 (2000).

    Article  CAS  Google Scholar 

  9. S. Y. Chou and P. R. Krauss, Microelectron. Eng. 35, 237 (1997).

    Article  CAS  Google Scholar 

  10. K. D. Lee, S. W. Ahn, S. H. Kim, S. H. Lee, J. D. Park, P. W. Yoon, D. H. Kim, and S. S. Lee, Current Appl. Phys. 6, 149 (2006).

    Article  Google Scholar 

  11. G. Y. Jung, S. Ganapathiappan, D. D. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, R. S. Williams, Nano Lett. 4, 1225 (2004).

    Article  CAS  Google Scholar 

  12. S.-H. Hong, B.-J. Bae, K.-S. Han, E.-J. Hong, H. Lee, and K.-W. Choi, Electron. Mater. Lett. 5, 39 (2009).

    Article  CAS  Google Scholar 

  13. K.-Y. Yang, J.-W. Kim, K.-J. Byeon, and H. Lee, Microelectron. Eng. 84, 1552 (2007).

    Article  CAS  Google Scholar 

  14. H. Lee and G.-Y. Jung, Microelectron. Eng. 77, 168 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyeong-Seok Kim or Heon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SH., Bae, BJ., Yang, KY. et al. Fabrication of sub-50 nm Au nanowires using thermally curing nanoimprint lithography. Electron. Mater. Lett. 5, 139–143 (2009). https://doi.org/10.3365/eml.2009.12.139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2009.12.139

Keywords

Navigation