Skip to main content
Log in

Catalysts for Synthesizing Liquid Hydrocarbons from Methanol and Dimethyl Ether: A Review

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Different ways of increasing the selectivity of catalysts are described for converting oxygenate to liquid hydrocarbons. Analysis of reports suggests that the main factors affecting the selectivity of zeolite-containing catalysts are the structural type and acidic properties of the zeolites. It is shown that the strength and distribution of acid sites depend on the structural type and chemical composition of the zeolite framework, and on the chemical nature of the exchange cations. Different ways of changing the acidic properties of zeolites are discussed, e.g., modifying them with cations of various elements and subjecting them to postsynthesis acidic, alkaline, and steam heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Haro, P., Trippe, F., Stahl, R., and Henrich, E., Appl. Energy, 2013, vol. 108, pp. 54–65.

    Article  CAS  Google Scholar 

  2. Khanshan, F.S. and West, R.H., Fuel, 2016, vol. 163, pp. 25–33.

    Article  CAS  Google Scholar 

  3. Phillips, S.D., Tarud, J.K., Biddy, M.J., and Dutta, A., Ind. Eng. Chem. Res., 2011, vol. 50, no. 20, pp. 11734–11745.

    Article  CAS  Google Scholar 

  4. Wang, Z., He, T., Qin, J., Wu, J., Li, J., Zi, Z., Liu, G., Wu, J., and Sun, L., Fuel, 2015, vol. 150, pp. 386–393.

    Article  CAS  Google Scholar 

  5. Yang, F.-K., Wang, S.-M., Xia, Y.-M., Bi, W.-H., and Wang, W., Pet. Sci. Technol., 2011, vol. 29, no. 16, pp. 1675–1684.

    Article  CAS  Google Scholar 

  6. Mokrani, T. and Scurrell, M., Catal. Rev., 2009, vol. 51, no. 1, pp. 1–145.

    Article  CAS  Google Scholar 

  7. Chang, C.D. and Silvestri, A.J., J. Catal., 1977, vol. 47, no. 2, pp. 249–259.

    Article  CAS  Google Scholar 

  8. Meisel, S.L., McCullough, J.P., Lechthaler, C.H., and Weisz, P.B., CHEMTECH, 1976, vol. 6, pp. 86–89.

    CAS  Google Scholar 

  9. Chang, C.D., Catal. Rev.: Sci. Eng., 1983, vol. 25, no. 1, pp. 1–85.

    Article  CAS  Google Scholar 

  10. Erofeev, V.I., Khomyakov, I.S., and Egorova, L.A., Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 71–76.

    Article  CAS  Google Scholar 

  11. Galadima, A., Muraza, O., J. Nat. Gas Sci. Eng., 2015, vol. 25, pp. 303–316.

    Article  CAS  Google Scholar 

  12. Luo, G. and McDonald, A.G., Energy Fuels, 2014, vol. 28, no. 1, pp. 600–606.

    Article  CAS  Google Scholar 

  13. US Patent 3 911 041, 1975.

  14. US Patent 3 894 107, 1975.

  15. US Patent 3 928 483, 1975.

  16. Martinez-Espin, J.S., Mortén, M., Janssens, T.V.W., Svelle, S., Beato, P., and Olsbye, U., Catal. Sci. Technol., 2017, vol. 7, no. 13, pp. 2700–2716.

    Article  CAS  Google Scholar 

  17. Kolesnichenko, N.V., Kitaev, L.E., Bukina, Z.M., Markova, N.A., Yushchenko, V.V., Yashina, O.V., Lin, G.I., and Rozovskii, A.Ya, Kinet. Catal., 2007, vol. 48, no. 6, pp. 789–793.

    Article  CAS  Google Scholar 

  18. US Patent 5459166, 1995.

  19. Haldor Topsøe. A/S Selective Hydrocarbon Synthesis: Demonstration Project (EUR 11808), Luxembourg: Office for Official Publications of the European Communities, 1988.

  20. Hansen, J.B., Voss, B., Joensen, F., and Sigurdardottir, I.D., Large scale manufacture of dimethyl ether—a new alternative diesel fuel from natural gas, SAE Technical Papers. https://www.sae.org/publications/technical-papers/content/950063/. Cited April 3, 2019.

  21. RF Patent 2 322 294, 2008.

  22. US Patent 8 450 545, 2013.

  23. Olah, G.A., Goeppert, A., and Prakash, G.K.S., Beyond Oil and Gas: The Methanol Economy, Weinheim: Wiley VCH, 2006.

    Google Scholar 

  24. Wang, Z., He, T., Li, J., Wu, J., Qin, J., Liu, G., Han, D., Zi, Z., Li, Z., and Wu, J., Fuel, 2016, vol. 186, pp. 587–596.

    Article  CAS  Google Scholar 

  25. Rozovskii, A.Ya., Lin. G.I, Russ. Chem. Bull., 2004, vol. 53, no. 11, pp. 2455–2466.

    Article  CAS  Google Scholar 

  26. Rozovskii, A.Y., Slivinskii, E.V., and Lin, G.I., Makhlin, V.A., Kolbanovsky, Y A., Platé, N.A., Pure Appl. Chem., 2004, vol. 76, no. 9, pp. 1735–1747.

    Article  CAS  Google Scholar 

  27. Qin, Z., Su, T., Ji, H., Jiang, Y., Lui, R., and Chen, J., AIChE J., 2015, vol. 61, no. 5, pp. 1613–1627.

    Article  CAS  Google Scholar 

  28. US Patent 0041932 A1, 2010.

  29. Zhang, Q., Tan, Y., Yang, C., Xie, H., and Han, Y., J. Ind. Eng. Chem., 2013, vol. 19, no. 3, pp. 975–980.

    Article  CAS  Google Scholar 

  30. Hajjar, Z., Khodadadi, A., Mortazavi, Y., Tayyebi, S., and Soltanali, S., Fuel, 2016, vol. 179, pp.79–86.

    Article  CAS  Google Scholar 

  31. Lee, S., Gogate, M.R., and Kulik, C.J., Fuel Sci. Technol. Int., 1995, vol. 13, no. 8, pp. 1039–1057.

    Article  CAS  Google Scholar 

  32. Chang, C.D., Catal. Today, 1992, vol. 13, pp. 103–111.

    Article  CAS  Google Scholar 

  33. Cobb, J., New Zealand Synfuel: The Story of the World’s First Natural Gas to Gasoline Plant, Auckland, New Zealand: Horwood Publications. 1995.

    Google Scholar 

  34. Haw, J.F., Song, W., Marcus, D.M., and Nicholas, J.B., Acc. Chem. Res., 2003, vol. 36, no. 5, pp. 317–326.

    Article  CAS  PubMed  Google Scholar 

  35. Ma, T., Imai, H., Yamawaki, M., Terasaka, K., and Li, X., Catalysts, 2014, vol. 4, no. 2, pp. 116–128.

    Article  CAS  Google Scholar 

  36. McCusker, L.B. and Olson, D.H., Preface Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007.

    Google Scholar 

  37. Ione, K.G., Echevskii, G.V., and Nosyreva, G.N., J. Catal., 1984, vol. 85, no. 1, pp. 287–294.

    Article  CAS  Google Scholar 

  38. Levinbuk, M.I., Khadzhiev, S.N., and Topchieva, K.V., Vestn. Mosk. Gos. Univ., Ser. 2 Khim., 1981, vol. 22, no. 5, pp. 505–507.

    CAS  Google Scholar 

  39. Berouane, E.G., Gabelica, Z., and Jacobs, P.A., J. Catal., 1981, vol. 70, no. 1, pp. 238–239.

    Article  Google Scholar 

  40. Handbook of Zeolite Science and Technology, Auerbach, S.M., Carrado, K.A., and Dutta, P.K., Eds., New York: Marcel Dekker, 2003.

    Google Scholar 

  41. Hou, Y., Wang, N., Zhang, J., and Qian, W., RSC Adv., 2017, vol. 7, no. 23, pp. 14309–14313.

    Article  CAS  Google Scholar 

  42. Derouane, E.G., Dejaifve, P., Gabelica, Z., and Védrine, J.C., Faraday Discuss. Chem. Soc., 1981, vol. 72, pp. 331–344.

    Article  Google Scholar 

  43. Foger, K., Sanders, J.V., and Seddon, D., Zeolites, 1984, vol. 4, no. 4, pp. 337–345.

    Article  CAS  Google Scholar 

  44. Nishi, K., Shimizu, T., Yoshida, H., Satsuma, A., and Hattori, T., Appl. Catal., A, 1998, vol. 166, no. 2, pp. 335–341.

  45. US Patent 4052472, 1977.

  46. Dejaifve, P., Auroux, A., Gravelle, P.C., Védrine, J.C., Gabelica, Z., and Derouane, E.G., J. Catal., 1981, vol. 70, no. 1, pp.123–136.

    Article  CAS  Google Scholar 

  47. Sawa, M., Niva, M., and Muracami, Y., Chem. Lett., 1987, vol. 16, no. 8, pp. 1637–1640.

    Article  Google Scholar 

  48. Aramendía, M.A., Borau, V., Jiménez, C., Marinas, J.M., Roldán, R., Romero, F.J., and Urbano, F.J., Chem. Lett., 2002, vol. 31, no. 7, pp. 672–673.

    Article  Google Scholar 

  49. Newsam, J.M., Treacy, M.M. J., Koetsier, W.T., and De Gruyter, C.B., Proc. R. Soc. London, Ser. A, 1988, vol. 420, no. 1859, p. 375–405.

  50. Hutchings, G.J., Johnston, P., Lee, D.F., Warwick, A., Williams, C.D., and Wilkinson, M., J. Catal., 1994, vol. 147, no. 1, pp. 177–185.

    Article  CAS  Google Scholar 

  51. Bjørgen, M. and Kolboe, S., Appl. Catal., A, 2002, vol. 225, nos. 1–2, pp. 285–290.

  52. Bjørgen, M., Olsbye, U., Svelle, S., and Kolboe, S., Catal. Lett., 2004, vol. 93, nos. 1–2, pp. 37–40.

  53. Bjørgen, M., Olsbye, U., and Kolboe, S., J. Catal., 2003, vol. 215, no. 1, pp. 30–44.

    Article  CAS  Google Scholar 

  54. Bjorgen, M., Akyalcin, S., Olsbye, U., Benard, S., Kolboe, S., and Svelle, S., J. Catal., 2010, vol. 275, no. 1, pp. 170–180.

    Article  CAS  Google Scholar 

  55. Teketel, S., Lundegaard, L.F., Skistad, W., Chavan, S.M., Olsbye, U., Lillerud, K.P., Beato, P., and Svelle, S., J. Catal., 2015, vol. 327, pp. 22–32.

    Article  CAS  Google Scholar 

  56. Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T.V.W., Joensen, F., Bordiga, S., and Lillerud, K.P., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 24, pp. 5810–5831.

    Article  CAS  Google Scholar 

  57. Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K.P., Beato, P., Svelle, S., ACS Catal., 2011, vol. 2, no. 1, pp. 26–37.

    Article  CAS  Google Scholar 

  58. Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., and Hulea, V., Appl. Catal., A, 2011, vol. 402, nos. 1–2, pp. 208–217.

  59. US Patent 4062905, 1977.

  60. Topchieva, K.V., Kubasov, A.A., and Thoang, V.D., Vestn. Mosk. Gos. Univ., Ser. 2 Khim., 1972, vol. 13, no. 6, pp. 628–632.

    CAS  Google Scholar 

  61. Cormerais, F.X., Chen, Y.-S., Kern, M., Gnep, N.S., Perot, G., and Guisnet, M., J. Chem. Res., Synop., 1981, vol. 9, pp. 290–291.

    Google Scholar 

  62. Kikhtyanin, O.V., Mastikhin, V.M., and Ione, K.G., Appl. Catal., 1988, vol. 42, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  63. Mortén, M., Mentel, L., Lazzarini, A., Pankin, I.A., Lamberti, C., Bordiga, S., Crocellà, V., Svelle, S., Lillerud, K.P., and Olsbye, U., ChemPhysChem, 2018, vol. 19, no. 4, pp. 484–495.

    Article  CAS  PubMed  Google Scholar 

  64. EP Patent 249 915, 1987.

  65. Yang, S.M., Wang, S.I., and Huang, C.S., Stud. Surf. Sci. Catal., 1991, vol. 61, pp. 429–435.

    Article  CAS  Google Scholar 

  66. Luk’yanov, B., Kinet. Katal., 1989, vol. 30, no. 1, p. 216.

    Google Scholar 

  67. Romannikov, V.N. and Ione, K.G., J. Mol. Catal., 1985, vol. 31, no. 2, pp. 251–267.

    Article  CAS  Google Scholar 

  68. Tconcheva, T., Dimitrova, R., Appl. Catal., A, 2002, vol. 225, nos. 1–2, pp. 101–107.

  69. Asaftei, I., Bîlbă, N., Bîrsă, L.M., and Iofcea, G., Acta Chem. Iasi, 2009, vol. 17, pp. 5–34.

    CAS  Google Scholar 

  70. Ni, Y., Sun, A., Wu, X., Hu, J., Li, T., and Li, G., Chin. J. Chem. Eng., 2011, vol. 19, no. 3, pp. 439–445.

    Article  CAS  Google Scholar 

  71. US Patent 3 894 103, 1975.

  72. RF Patent 1 153 501, 1996.

  73. Fang, Y., Tang, J., Huang, X., Shen, W., Song, Y., and Sun, C., Chin. J. Catal., 2010, vol. 31, no. 3, pp. 264–266.

    Article  CAS  Google Scholar 

  74. Wen, Z., Wang, C., Wei, J., Sun. J., Guo, L., Ge, Q., and Xu, H., Catal. Sci. Technol., 2016, vol. 6, no. 22, pp. 8089–8097.

    Article  CAS  Google Scholar 

  75. RF Patent 1 452 070, 1996.

  76. Wan, Z., Wu, W., Li, G., Wang, C., Yang, H., and Zhang, D., Appl. Catal., A, 2016, vol. 523, pp. 312–320.

  77. Gayubo, A. G., Benito, P.L., Aguayo, A.T., Olazar, M., and Bilbao, J., J. Chem. Technol. Biotechnol., 1996, vol. 65, no. 2, pp. 186–192.

    Article  CAS  Google Scholar 

  78. Wu, L., Magusin, P.C.M.M., Degirmenci, V., Li, M., Almutairi, S.M.T., Zhu, X., Mezari, B., and Hensen, E.M.J., Microporous Mesoporous Mater., 2014, vol. 189, pp. 144–157.

    Article  CAS  Google Scholar 

  79. Chang, C.D., Chu, S.T.-W., and Soca, R.F., J. Catal., 1984, vol. 86, no. 2, pp. 289–296.

    Article  CAS  Google Scholar 

  80. Sardesai, A. and Lee, S., Prepr. Symp.—Am. Chem. Soc., Div. Fuel Chem., 1998, vol. 43, no. 3, pp. 722–726.

    CAS  Google Scholar 

  81. Wu, G., Wu, W., Wang, X., Zan, W., Wang, W., and Li, C., Microporous Mesoporous Mater., 2013, vol. 180, pp. 187–195.

    Article  CAS  Google Scholar 

  82. US Patent 3899544, 1975.

  83. Hajimirzaee, S., Mehr, A.S., Ghavipour, M., Vatankhah, M., and Behbahani, R.M., Pet. Sci. Technol., 2017, vol. 35, no. 3, pp. 279–286.

    Article  CAS  Google Scholar 

  84. Amin, N.A.S. and Anggoro, D.D., J. Nat. Gas Chem., 2003, vol. 12, no. 2, pp. 123–134.

    CAS  Google Scholar 

  85. Soltanali, S., Halladj, R., and Rashidi, A., Hajjar, Z., and Shafeghat, A., Energy Sources, Part A, 2017. https://doi.org/10.1080/15567036.2016.1236301

  86. US Patent 3 894 104, 1975.

  87. Conte, M., Lopez-Sanchez, J.A., He, Q., Morgan, D.J., Ryabenkova, Yu., Bartley, J.K., Carley, A.F., Taylor, S.H., Kiely, C.J., Khalid, K., and Hutchings, G.J., Catal. Sci. Technol., 2012, vol. 2, no. 1, pp. 105–112.

    Article  CAS  Google Scholar 

  88. Zaidi, H.A. and Pant, K.K., Korean J. Chem. Eng., 2005, vol. 22, no. 3, pp. 353–357.

    Article  CAS  Google Scholar 

  89. Liu, B., France, L., Wu, C., Jiang, Z., Kuznetsov, V.L., Al-Megren, H.A., Al-Kinany, M., Aldrees, A.S., Xiao, T., and Edwards, P.P., Chem. Sci., 2015, vol. 6, no. 9, pp. 5152–5163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Niu, X., Gao, J., Miao, Q., Dong, M., Wang, G., Fan, W., Qin, Z., and Wang, J., Microporous Mesoporous Mater., 2014, vol. 197, pp. 252–261.

    Article  CAS  Google Scholar 

  91. Lubango, L.M. and Scurrell, M.S., Appl. Catal., A, 2002, vol. 235, nos. 1–2, pp. 265–272.

  92. Asaftei, I.V., Lungu, N.C., Birsa M.L., Sarbu, L.G., Ignat, M., and Sandu, I.G., Rev. Chim. (Bucharest, Rom.), 2016, vol. 67, no.8, pp. 1523–1528.

  93. Mole, T., Anderson, J.R., and Creer, G., Appl. Catal., 1985, vol. 17, no. 1, pp. 141–154.

    Article  CAS  Google Scholar 

  94. Freeman, D., Wells, R.P.K., and Hutchings, G.J., Chem. Commun., 2001, no. 18, pp. 1754–1755.

  95. Zaidi, H.A. and Pant, K.K., Catal. Today, 2004, vol. 96, no. 3, pp. 155–160.

    Article  CAS  Google Scholar 

  96. Inoue, Y., Nakashiro, K., and Ono, Y., Microporous Mater., 1995, vol. 4, no. 5, pp. 379–383.

    Article  CAS  Google Scholar 

  97. RF Patent 2 478 007, 2013.

  98. RF Patent 2 189 858, 2002.

  99. RF Patent 2 160 160, 1999.

  100. RF Patent 2 160 161, 1999.

  101. Ono, Y., Adachi, H., and Senoda, Y., J. Chem. Soc., Faraday Trans. 1, 1988, vol. 84, no. 4, pp. 1091–1099.

    Article  CAS  Google Scholar 

  102. Kitaev, L.E., Bukina, Z.M., Yushchenko, V.V., Ionin, D.A., Kolesnichenko, N.V., and Khadzhiev, S.N., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 3, pp. 381–385.

    Article  CAS  Google Scholar 

  103. RF Patent 2 442 650, 2010.

  104. Mentzel, U.V., Højholt, K.T., Holm, M.S., Fehrmann, R., and Beato, P., Appl. Catal., A, 2012, vols. 417–418, pp. 290– 297.

  105. US Patent 4582949, 1986.

  106. Choudhary, V.R. and Kinage, A.K., Zeolites, 1995, vol. 15, no. 8, pp. 732–738.

    Article  CAS  Google Scholar 

  107. Miyamoto, T., Katada, N., Kim, J.-H., and Niwa, M., J. Phys. Chem. B, 1998, vol. 102, no. 35, pp. 6738–6745.

    Article  CAS  Google Scholar 

  108. Lalik, E., Liu, X., and Klinowski, J., J. Phys. Chem., 1992, vol. 96, no. 2, pp. 805–809.

    Article  CAS  Google Scholar 

  109. Lee, K.-Y., Lee, S.-W., and Ihm, S.-K., Ind. Eng. Chem. Res., 2014, vol. 53, no. 24, pp. 10072–10079.

    Article  CAS  Google Scholar 

  110. Velichkina, L.M., Pestryakov, A.N., Vosmerikov, A.V., Tuzovskaya, I.V., Bogdanchikova, N.E., Avalos, M., Farias, M., and Tiznado, H., Pet. Chem., 2008, vol. 48, no. 5, pp. 355–359.

    Article  Google Scholar 

  111. Ione, K.G., Vostrikova, L.A., Petrova, A.V., and Mastikhin, V.M., Stud. Surf. Sci. Catal., 1984, vol. 18, pp. 151–158.

    Article  CAS  Google Scholar 

  112. US Patent 4268420, 1981.

  113. Meng, X., Chen, C., Liu, J., Zhang, Q., Li, C., and Cui, Q., Appl. Petrochem. Res., 2016, vol. 6, no. 1, pp. 41–47.

    Article  CAS  PubMed  Google Scholar 

  114. Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T., and Li, G., Microporous Mesoporous Mater., 2011, vol. 143, nos. 2–3, pp. 435–442.

  115. Centi, G., Perathoner, S., Arrigo, R., Giordano, G., Katovic, A., and Pedulà, V., Appl. Catal., A, 2006, vol. 307, no. 1, pp. 30–41.

  116. Palin, L., Lamberti, C., Kvick, A., Testa, F., Aiello, R., Milanesio, M., and Viterbo, D., J. Phys. Chem. B, 2003, vol. 107, no. 17, pp. 4034–4042.

    Article  CAS  Google Scholar 

  117. Chu, C.T.-W., Kuehl, G.H., Lago, R.M., and Chang, C.D., J. Catal., 1985, no. 2, vol. 93, pp. 451–458.

    Article  CAS  Google Scholar 

  118. Coudurier, G. and Védrine, J.C., Stud. Surf. Sci. Catal., 1986, vol. 28, pp. 643–652.

    Article  CAS  Google Scholar 

  119. Coudurier, G., Auroux, A., Vedrine, J.C., Farlee, R.D., Abrams, L., and Shannon, R.D., J. Catal., 1987, vol. 108, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  120. Sayed, M.B. and Védrine, J.C., J. Catal., 1986, vol. 101, no. 1, pp. 43–55.

    Article  CAS  Google Scholar 

  121. Khanmohammadi, M., Amani, Sh., Garmarudi, A.B., and Niaei, A., Chin. J. Catal., 2016, vol. 37, no. 3, pp. 325–339.

    Article  CAS  Google Scholar 

  122. van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong, K.P., Catal. Rev.: Sci. Eng., 2003, vol. 45, no. 2, pp. 297–319.

    Article  CAS  Google Scholar 

  123. Zaidi, H.A. and Pant, K.K., Ind. Eng. Chem. Res., 2008, vol. 47, no. 9, pp. 2970–2975.

    Article  CAS  Google Scholar 

  124. Spiridonov, S.E., Khadzhiev, S.N., and Yaralov, N.G., Kinet. Katal., 1986, vol. 27, no. 1, pp. 201–204.

    CAS  Google Scholar 

  125. Kooyman, P.J., van der Waal, P., van Bekkum, H., Zeolites, 1997, vol. 18, no. 1, pp. 50–53.

    Article  CAS  Google Scholar 

  126. Meng, F., Wang, Y., and Wang, S., RSC Adv., 2016, vol. 6, no. 63, pp. 58586–58593.

    Article  CAS  Google Scholar 

  127. Meng, F., Wang, X., Wang, S., and Wang, Y., Catal. Today, 2017, vol. 298, pp. 226–233.

    Article  CAS  Google Scholar 

  128. Bjorgen, M., Joensen, F., Holm, M.S., Olsbye, U., Lillerud, K.-P., and Svelle, S., Appl. Catal., A, 2008, vol. 345, no. 1, pp. 43–50.

  129. Fathi, S., Sohrabi, M., and Falamaki, C., Fuel, 2014, vol. 116, pp. 529–537.

    Article  CAS  Google Scholar 

  130. Rac, V., Rakić, V., Miladinović, Z., Stošić, D., and Auroux, A., Thermochim. Acta, 2013, vol. 567, pp. 73–78.

    Article  CAS  Google Scholar 

  131. van der Bij, H.E., Aramburo, L.R., Arstad, B., Dynes, J.J., Wang, J., and Weckhuysen, B.M., ChemPhysChem, 2014, vol. 15, no. 2, pp. 283–292.

    Article  CAS  PubMed  Google Scholar 

  132. Rahmani, F., Haghighi, M., and Estifaee, P., Microporous Mesoporous Mater., 2014, vol. 185, pp. 213–223.

    Article  CAS  Google Scholar 

  133. Sadeghi, S., Haghighi, M., and Estifaee, P., J. Nat. Gas Sci. Eng., 2015, vol. 24, pp. 302–310.

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was performed as part of a State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences. It was supported by the Federal Agency for Scientific Organizations of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Matieva.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matieva, Z.M., Snatenkova, Y.M., Kolesnichenko, N.V. et al. Catalysts for Synthesizing Liquid Hydrocarbons from Methanol and Dimethyl Ether: A Review. Catal. Ind. 11, 101–112 (2019). https://doi.org/10.1134/S2070050419020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419020089

Keywords:

Navigation