Skip to main content
Log in

REDUCTIVE SUBGROUP SCHEMES OF A PARAHORIC GROUP SCHEME

  • Published:
Transformation Groups Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let K be the field of fractions of a complete discrete valuation ring \( \mathcal{A} \) with residue field k, and let G be a connected reductive algebraic group over K. Suppose \( \mathcal{P} \) is a parahoric group scheme attached to G. In particular, \( \mathcal{P} \) is a smooth affine \( \mathcal{A} \)-group scheme having generic fiber \( \mathcal{P} \)K = G; the group scheme \( \mathcal{P} \) is in general not reductive over \( \mathcal{A} \).

If G splits over an unramified extension of K, we find in this paper a closed and reductive \( \mathcal{A} \)-subgroup scheme \( \mathcal{M}\subset \mathcal{P} \) for which the special fiber \( \mathcal{M} \)k is a Levi factor of \( \mathcal{P} \)k. Moreover, we show that the generic fiber \( M={\mathcal{M}}_{\mathrm{K}} \) is a subgroup of G which is geometrically of type C(μ) – i.e., after a separable field extension, M is the identity component \( M={C}_G^o\left(\phi \right) \) of the centralizer of the image of a homomorphism ϕ: μnH, where μn is the group scheme of n-th roots of unity for some n ≥ 2. For a connected and split reductive group H over any field \( \mathcal{F} \), the paper describes those subgroups of H which are of type C(μ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, J. de Siebenthal, Les sous-groupes fermfies de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221.

    Article  MathSciNet  Google Scholar 

  2. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  3. N. Bourbaki, Lie Groups and Lie Algebras (Chapters 4–6), Elements of Mathematics, Springer-Verlag, Berlin, 2002.

  4. F. Bruhat, J. Tits, Groupes réductifs sur un corps local II, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197–376.

  5. B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive Groups, 2nd ed., New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015.

  6. M. Demazure, A. Grothendieck, Schémas en Groupes (SGA 3), Tome I, Séminaire de Géométrie Algébrique du Bois Marie 1962–64, Documents Mathématiques, Vol. 7, Société Mathématique de France, Paris, 2011.

  7. M. Demazure, A. Grothendieck, Schémas en Groupes (SGA 3), Tome II, Séminaire de Géométrie Algébrique du Bois Marie 1962–64, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin, 1970.

  8. M. Demazure, A. Grothendieck, Schémas en Groupes (SGA 3), Tome III, Séminaire de Géométrie Algébrique du Bois Marie 1962–64, Documents Mathématiques, Vol. 8, Société Mathématique de France, Paris, 2011.

  9. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, 2nd ed., Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1978.

  10. J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, Vol. 43, American Mathematical Society, Providence, RI, 1995.

  11. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

  12. M-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.

  13. G. Lusztig, Classification of unipotent representations of simple p-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589.

    Article  MathSciNet  Google Scholar 

  14. G. McNinch, Levi decompositions of a linear algebraic group, Transform. Groups 15 (2010), no. 4, 937–964.

    Article  MathSciNet  Google Scholar 

  15. G. McNinch, On the nilpotent orbits of a reductive group over a local field, preprint (2016), https://gmcninch.math.tufts.edu/manuscripts.html

  16. G. McNinch, E. Sommers, Component groups of unipotent centralizers in good characteristic, J. Algebra 260 (2003), no. 1, 323–337.

    Article  MathSciNet  Google Scholar 

  17. J. Martens, M. Thaddeus, Variations on a theme of Grothendieck, arXiv: 1210.8161v2 (2015).

  18. S. Pepin Lehalleur, Subgroups of maximal rank of reductive groups, in: Autour des Schémas en Groupes (Vol. III), Panor. Synthéses, Vol. 47, Soc. Math. France, Paris, 2015, pp. 147–172.

  19. M. Reeder, Torsion automorphisms of simple Lie algebras, Enseign. Math. 56 (2010). no. 1-2, 3–47.

    Article  MathSciNet  Google Scholar 

  20. M. Reeder, P. Levy, J-K. Yu, B. Gross, Gradings of positive rank on simple Lie algebras, Transform. Groups 17 (2012), no. 4. 1123–1190.

    Article  MathSciNet  Google Scholar 

  21. I. Reiner, Maximal Orders, London Mathematical Society Monographs (New Series), Vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003.

  22. R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1–28.

    Article  MathSciNet  Google Scholar 

  23. J-P. Serre, Local fields, Graduate Texts in Mathematics, Vol. 67, Springer- Verlag, New York, 1979.

  24. J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin, 1994.

  25. J-P. Serre, Coordonnées de Kac, Oberwolfach Reports, 2006.

  26. T. A. Springer, Linear Algebraic Groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 1998.

  27. T. A. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266.

    Google Scholar 

  28. R. Steinberg, The isomorphism and isogeny theorems for reductive algebraic groups, J. Algebra 216 (1999), no. 1, 366–383.

    Article  MathSciNet  Google Scholar 

  29. J. Tits, Reductive groups over local fields, in: Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69.

  30. J. Tits, Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), no. 2, 648–677.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GEORGE MCNINCH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MCNINCH, G. REDUCTIVE SUBGROUP SCHEMES OF A PARAHORIC GROUP SCHEME. Transformation Groups 25, 217–249 (2020). https://doi.org/10.1007/s00031-018-9508-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9508-3

Navigation