Skip to main content
Log in

Determination of the Metal Dispersion of Supported Catalysts Using XPS

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, recent applications of XPS for the dispersion measurements of oxidic supports and metal catalysts were discussed. The most frequently used models, those of Kerkhof–Moulijn and Davis, were selected to give an overview of several applications in the study of catalysts, based on noble (Pd, Au, Ag, and Rh) and non-noble metals (Co, Ni). In the case of the dispersion of different promoters on the surface of oxidic supports, the Kerkhof–Moulijn model was often applied. Good correlations were achieved for high surface area Al2O3 supports modified by La, B and W. This model was also applied to analyze the dispersion of Co, Ni, Pd and Rh on oxidic supports, making it possible to propose the limit of monolayer formation for homogeneously distributed metal particles. The Davis model was developed for the estimation of metal particle sizes. This method considered the morphology of the metal particles and assumed a diamond-shaped support. The XPS results combined with the information obtained through other techniques showed the potential application of this model in the determination of metal particle sizes for Rh, Au, Pd and Ni based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from [7])

Fig. 2

(Reproduced with permission from [13])

Fig. 3

(Reproduced with permission from [14])

Fig. 4

(Reproduced with permission from [15])

Fig. 5
Fig. 6

(Reproduced with permission from [16, 18, 19])

Fig. 7

(Reproduced with permission from [21])

Fig. 8

(Reproduced with permission from [5, 25])

Fig. 9

(Reproduced with permission from [31])

Fig. 10

(Reproduced with permission from [32])

Fig. 11
Fig. 12

(Reproduced with permission from [35, 36])

Fig. 13

(Reproduced with permission from [38])

Fig. 14

(Reproduced with permission from [39])

Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

α:

c/λ dimensionless crystallite size parameter

β(d,λ):

Attenuation factor

\(\beta\) :

t dimensionless parameter

δi :

Density

λi :

Attenuation length or inelastic mean free path

σi :

Photoelectron cross section

θ :

Emission angle of the electron from the surface normal

A 0 :

Analyzed area

c :

Dimension of crystallites with cubic shape

d :

Diameter or particle size

dI i :

Photoelectric differential peak intensity

D(Ei):

Detector efficiency

Ei :

Kinetic energy

f :

Fraction of support covered with the promoter

F(Ei):

Instrumental factor

h :

Height

Ii :

Photoelectric peak intensity

Jx :

X-ray flux

l :

Traveling length of the electrons

Li :

Angular asymmetry factor

ni :

Atomic density

P xy :

Fraction of electron travelling through another layer

S i :

Sensitivity factor

S 0 :

Support surface area

t :

Support sheet thickness

T(E i):

Analyzer transmission

x :

Promoter fraction (weight) in the final catalyst

References

  1. Briggs D, Seah MP (1990) Practical surface analysis, 2nd edn. Wiley, Chichester

    Google Scholar 

  2. Kerkhof FPJM, Moulijn JA (1979) J Phys Chem 83:1612–1619

    Article  CAS  Google Scholar 

  3. Cimino A, Gazzoli D, Valigi M (1999) J Electron Spectrosc Relat Phenom 104:1–29

    Article  CAS  Google Scholar 

  4. León V (1995) Surf Sci 339:L931–L934

    Article  Google Scholar 

  5. Davis SM (1989) J Catal 117:432–446

    Article  CAS  Google Scholar 

  6. Hercules DM (1996) Fresenius J Anal Chem 355:209–215

    CAS  Google Scholar 

  7. Ledford JS, Kim YM, Houalla M, Proctor A, Hercules DM (1989) J Phys Chem 93:6770–6777

    Article  CAS  Google Scholar 

  8. Houalla M, Kibby CL, Hercules DM (1983) J Catal 83:50–60

    Article  CAS  Google Scholar 

  9. Stranick MA, Houalla M, Hercules DM (1987) J Catal 103:151–159

    Article  CAS  Google Scholar 

  10. Stranick MA, Houalla M, Hercules DM (1987) J Catal 106:362–368

    Article  CAS  Google Scholar 

  11. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  12. Penn DR (1976) J Electron Spectrosc Relat Phenom 9:29–40

    Article  CAS  Google Scholar 

  13. Saih Y, Segawa K (2009) Appl Catal A 353:258–265

    Article  CAS  Google Scholar 

  14. García-Fernández S, Gandarias I, Requies J, Güemez J, Bennici S, Auroux A, Arias PL (2015) J Catal 323:65–75

    Article  CAS  Google Scholar 

  15. López Granados M, Gurbani A, Mariscal R, Fierro JLG (2008) J Catal 256:172–182

    Article  CAS  Google Scholar 

  16. Andrei Y, Khodakov A, Griboval-C A (2002) J Catal 206:230–241

    Article  CAS  Google Scholar 

  17. Seah MP, Dench WA (1979) Surf Interface Anal 1:2–11

    Article  CAS  Google Scholar 

  18. Khodakov A, Bechara R, Griboval-Constant A (2003) Appl Catal A 254:273–288

    Article  CAS  Google Scholar 

  19. Girardon JS, Lermontov AS, Gengembre L, Chernavskii PA, Griboval-Constant A, Khodakov AY (2005) J Catal 230:339–352

    Article  CAS  Google Scholar 

  20. Kistamurthy D, Saib AM, Moodley DJ, Niemantsverdriet JW, Weststrate CJ (2015) J Catal 328:123–129

    Article  CAS  Google Scholar 

  21. Milt VG, Ulla MA, Lombardo EA (2001) J Catal 200:241–249

    Article  CAS  Google Scholar 

  22. Monai M, Montini T, Gorte R, Fornasiero P (2018) Eur J Inorg Chem 25:2884–2893

    Article  CAS  Google Scholar 

  23. Wojcieszak R, Gaigneaux E, Ruiz P (2013) Chem Cat Chem 5:339–348

    CAS  Google Scholar 

  24. Trzeciak A, Augustyniak W (2019) Coordin Chem Rev 384:1–20

    Article  CAS  Google Scholar 

  25. Wojcieszak R, Genet MJ, Eloy P, Ruiz P, Gaigneaux EM (2010) J Phys Chem C 114(39):16677–16684

    Article  CAS  Google Scholar 

  26. Venezia AM (2003) Catal Today 77:359–370

    Article  CAS  Google Scholar 

  27. Soler L, Casanovas A, Urrich A, Angurell I, Llorca J (2016) Appl Catal B 197:47–55

    Article  CAS  Google Scholar 

  28. Takale B, Bao M, Yamamoto Y (2014) Org Biomol Chem 12:2005–2027

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Mahr C, Murshed M, Gesing TM, Rosenauer A, Bäumera M, Wittstock A (2017) Phys Chem Chem Phys 19:8880–8888

    Article  CAS  PubMed  Google Scholar 

  30. Bumajdad A, Madkoura M (2014) Phys Chem Chem Phys 16:7146–7158

    Article  CAS  PubMed  Google Scholar 

  31. Smirnov M, Kalinkin A, Bukhtiyarov A, Prosvirin IP, Bukhtiyarov VI (2016) J Phys Chem C 120:10419–10426

    Article  CAS  Google Scholar 

  32. Sahoo SR, Ramacharyulu VRKP, Shyue-Chu K (2018) Anal Chem 90:1621–1627

    Article  CAS  PubMed  Google Scholar 

  33. Kantcheva M, Milanova M, Avramova I, Mametsheripov S (2012) Catal Today 187:39–47

    Article  CAS  Google Scholar 

  34. Musialska K, Finocchio E, Sobczak I, Busca G, Wojcieszak R, Gaigneaux E, Ziolek M (2010) Appl Catal A 384:70–77

    Article  CAS  Google Scholar 

  35. Ligthart DAJM, van Santen RA, Hensen EJM (2011) J Catal 280:206–220

    Article  CAS  Google Scholar 

  36. Coronel L, Múnera JF, Tarditi AM, Moreno MS, Cornaglia LM (2014) Appl Catal B 160–161:254–266

    Article  CAS  Google Scholar 

  37. Tougaard S (2002) QUASES-IMFP-TPP2M program. Quases-Tougaard Inc, Odense

    Google Scholar 

  38. Karelovic A, Ruiz P (2012) Appl Catal B 113–114:237–249

    Article  CAS  Google Scholar 

  39. Davis Z, Tatarchuk B (2015) Appl Surf Sci 353:679–685

    Article  CAS  Google Scholar 

  40. Mattos L, Jacobs G, Davis B, Noronha F (2012) Chem Rev 112:4094–4123

    Article  CAS  PubMed  Google Scholar 

  41. Chen D, Christensen K, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N, Monzón A, Holmen A (2005) J Catal 229:82–86

    Article  CAS  Google Scholar 

  42. Tarditi AM, Barroso N, Galetti G, Arrúa L, Cornaglia L, Abello MC (2014) Surf Interface Anal 46:521–529

    Article  CAS  Google Scholar 

  43. Li Y, Wen J, Ali AM, Duan M, Zhu W, Zhang H, Chen C, Li Y (2018) Chem Commun 54(49):6364–6367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are given to Universidad Nacional del Litoral, CONICET and ANPCyT for the purchase of the SPECS multitechnique analysis instrument (PME8-2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Cornaglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarditi, A.M., Mori, M.F. & Cornaglia, L.M. Determination of the Metal Dispersion of Supported Catalysts Using XPS. Top Catal 62, 822–837 (2019). https://doi.org/10.1007/s11244-019-01191-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01191-0

Keywords

Navigation