Skip to main content
Log in

Evolution of the Isotopic-Geochemical Composition of Rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and Its Relations to the Tectonic Restyling of Kamchatka in the Neogene

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents newly acquired data on concentrations of major and trace elements and on Sr, Nd, and Pb isotope composition in Pliocene and Late Pleistocene–Holocene mafic volcanic rocks of the Uksichan volcanic center, one of the largest in the Sredinnyi Range of Kamchatka. Based on these data, the mafic Pliocene volcanics are thought to be produced by the melting of heterogenized mantle, which had been hybridized by subduction and asthenospheric processes. The behavior of HFSE and Pb isotopic systematics provide evidence of the melting of subducted sediment and origin of pyroxenite segregations in the peridotite matrix. The low ∆8/4Pb values of the Pliocene lavas of Uksichan shield volcano and in modern large volcanic centers in the Central Kamchatka Depression are correlated with the magmatic productivity, which indicates, when considered together with HFSE and HREE behavior, that the Pacific asthenosphere was involved in the magma-generating processes. The Late Pleistocene–Holocene basalt volcanism, which was distributed over the peripheries of the Pliocene shield edifice, developed in an extensional environment as a result of the melting of an enriched mantle source. The attenuation and then complete termination of volcanic activity in the Sredinnyi Range in the Late Pleistocene–Holocene were associated with an increase in the ∆8/4Pb of the mafic lavas, which indicates that the center of the activity of the oceanic asthenosphere shifted eastward toward the Central Kamchatka Depression. The influence of the oceanic asthenosphere on subduction-related magmatism is not unique for convergence zones and should be taken into consideration when models are constructed for the origin of juvenile continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Anderson, A.T., Magma mixing: petrological process and volcanological tool, J. Volcanol. Geothermal Res., 1976, vol. 1, pp. 3–33.

    Article  Google Scholar 

  2. Antipin, V.S., Volynets, O.N., Perepelov, A.B., et al., Geological relations and geochemical evolution of calc-alkaline and subalkaline volcanism of the Uksichan Caldera, Kamchatka, Geokhimiya magmaticheskikh porod sovremennykh i drevnikh aktivnykh zon (Geochemistry of Magmatic Rocks of Modern and Ancient Active Zones), Novosibirsk: Nauka, 1987, pp. 72–81.

    Google Scholar 

  3. Auer, S., Bindeman, I., Wallace, P., et al., The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia, Contrib. Mineral. Petrol., 2009, vol. 157, no. 2, pp. 209–230.

    Article  Google Scholar 

  4. Avdeiko, G.P., Palueva, A.A., and Khleborodov, O.A., Geodynamic conditions of volcanism and magma formation in the Kurile–Kamchatka Island-Arc System, Petrology, 2006, vol. 14, no. 3, pp. 230–246.

    Article  Google Scholar 

  5. Balesta, S.T., Zemnaya kora i magmaticheskie ochagi oblastei sovremennogo vulkanizma (Earth’s Crust and Magmatic Sources of Modern Volcanic Areas), Moscow: Nauka, 1981.

    Google Scholar 

  6. Balesta, S.T., Zubin, M.I., Anosov, G.I., and Utnasin, V.K., Structure of the Earth’s crust of Kamchatka from GSZ and gravimetry data, Vulkanizm ostrovnykh dug (Volcanism of Island Arcs), Moscow: Nauka, 1977, pp. 35–42.

    Google Scholar 

  7. Best, M.G. and Christiansen, E.H., Igneous Petrology, Oxford: Blackwell Science, 2001.

    Google Scholar 

  8. Bindeman, I.N., Leonov, V.L., Izbekov, P.E., et al., Large volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions, J. Volcanol. Geotherm. Res., 2010, vol. 189, pp. 57–80.

    Article  Google Scholar 

  9. Chashchin, A.A. and Martynov, Yu.A., Petrologiya porod vulkanov Gorelyi, Mutnovskii (Yuzhnaya Kamchatka) (Petrology of Rocks of the Gorelyi and Mutnovsky Volcano, South Kamchatka), Vladivostok: Dal’nauka, 2011.

  10. Class, C. and Lehnert, K., PetDB expert MORB (mid-ocean ridge basalt) compilation, EarthChem Library, 2012. https://doi.org/10.1594/IEDA/100060

  11. Davydova, M.Yu. and Martynov, Yu.A., “Diffusion” boundary of isotope reservoirs of the Indian and Pacific-Type MORBs beneath Kamchatka, Dokl. Earth Sci. (in press).

  12. Deistvuyushchie vulkany Kamchatki (Active Volcanoes of Kamchatka), Moscow: Nauka, 1991.

  13. Dorendorf, F., Wiechert, U., and Wörner, G., Hydrated sub-arc mantle: a source for the Kluchevskoy Volcano, Kamchatka/Russia, Earth Planet. Sci. Lett., 2000, vol. 175, pp. 69–86.

    Article  Google Scholar 

  14. Dosseto, A., Bourdon, B., Joron, J.-L., and Dupre, B., U–Th–Pa–Ra study of the Kamchatka arc: new constraints on the genesis of arc lavas, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 15, pp. 2857–2877.

    Article  Google Scholar 

  15. Duggen, S., Portnyagin, M., Baker, J., et al., Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 452–480.

    Article  Google Scholar 

  16. Eiler, J.M., Crawford, A., Elliott, T., et al., Oxygen isotope geochemistry of oceanic-arc lavas, J. Petrol., 2000, vol. 41, pp. 229–256.

    Article  Google Scholar 

  17. Eiler, J.M. and Kitchen, N., Hydrogen-isotope analysis of nanomole (picoliter) quantities of H2O, Geochim. Cosmochim. Acta, 2001, vol. 65, no. 24, pp. 4467–4479.

    Article  Google Scholar 

  18. Elliott, T., Tracers of the slab, in inside the subduction factory, Geophys. Monogr. Ser., 2003, vol. 138, pp. 23–45.

    Google Scholar 

  19. Gill, J.B., Orogenic Andesites and Plate Tectonic: Mineral and Rocks, Berlin-Heidelberg: Springer-Verlag, 1981.

    Book  Google Scholar 

  20. Gorbach, N.V. Origin and Evolution of magmas of the Shiveluch Volcanic Massif: Geological and Petrological-Geochemical Data, Candidate’s (Geol.-Min.) Dissertation, Vladivostok: DVGI DVO RAN, 2013. 172 s.

  21. Green, T.H., Blundy, J.D., Adam, J., and Yaxley, G.M., SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 Ga and 1080–1200°C, Lithos, 2000, vol. 25, pp. 165–187.

    Article  Google Scholar 

  22. Hart, S.R., A large-scale isotope anomaly in the southern hemisphere mantle, Nature, 1984, vol. 309, pp. 756–757.

    Article  Google Scholar 

  23. Hoernle, K., Hauff, F., Kokfelt, T.F., et al., On- and off-axis chemical heterogeneities along the South Atlantic mid-ocean-ridge (5°–11°S): shallow or deep recycling of ocean crust and/or intraplate volcanism?, Earth Planet. Sci. Lett., 2011, vol. 306, nos. 1–2, pp. 86–97.

    Article  Google Scholar 

  24. Imai, N., Terashima, S., Itoh, S., and Ando, A., 1994 compilation values for GSJ reference samples, “igneous” rock “series”, Geochem. J., 1995, vol. 29, pp. 91–95.

    Article  Google Scholar 

  25. Johnson, M.C. and Plank, T., Dehydration and melting experiments constrain the fate of subducted sediments, Geochem., Geophys., Geosyst., 2000, vol. 12, no. (G3). doi 10.1029/999GC000014

  26. Karig, D.E., Ridges and basins of the Tonga–Kermadec island arc system, J. Geophys. Res., 1970, vol. 75, pp. 239–254.

    Article  Google Scholar 

  27. Kayazar, T.M., Nelson, B.K., Bachmann, O., et al., Deciphering petrogenic processes using Pb isotope ratios from time-series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka depression, Contrib. Mineral. Petrol., 2014, vol. 168, p. 1067. doi 10.1007/s00410-014-1067-6

    Article  Google Scholar 

  28. Kepezhinskas, P., McDermott, F., Defant, M.J., et al., Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 577–600.

    Article  Google Scholar 

  29. Kersting, A.B. and Arculus, R.J., Pb systematics of Klyu-chevskoy volcano, Kamchatka, and North Pacific sediments: implications for magma genesis and sediment recycling in the Kamchatkan arc, Earth Planet. Sci. Lett., 1995, vol. 136, pp. 133–148.

    Article  Google Scholar 

  30. Khanchuk, A.I. and Ivanov, V.V., Mesocenozoic geodynamic settings and gold mineralization of the Russian Far East, Geol. Geofiz., 1999, vol. 40, no. 11, pp. 1635–1645.

    Google Scholar 

  31. Kimura, J.-I. and Yoshida, T., Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan Arc, J. Petrol., 2006, vol. 47, pp. 2185–2232.

    Article  Google Scholar 

  32. Konstantinovskaya, E.A., Tektonika vostochnykh okrain Azii: strukturnoe razvitie i geodinamicheskoe modelirovanie (Tectonics of Eastern Asian Margin: Structural Evolution and Geodynamic Modeling), Moscow: Nauchnyi Mir, 2003.

  33. Kostitsyn, Yu. A. and Anosova, M. O., U–Pb age of extrusive rocks in the Uxichan Caldera, Sredinnyi Range, Kamchatka: application of laser ablation in dating young zircons, Geochem. Int., 2013, vol. 51, no. 2, pp. 155–163.

    Article  Google Scholar 

  34. Kozhemyaka, N.N., Long-lived volcanic centers of Kamchatka: types of edifices, duration of formation, volume of volcanic rocks, productivity, mass balance, and tectonic setting, Vulkanol. Seismol. 1995, no. 6, pp. 3–19.

  35. Lander, A.V. and Shapiro, M.N., The origin of the modern Kamchatka subduction zone, Volcanism and Tectonics of the Kamchatka Peninsula and Adjacent Arcs, Ed. by Eichelberger, J., Gordeev, E., Kasahara, M., , Geophys. Monogr. Ser., 2007, vol. 172, pp. 57–64.

    Google Scholar 

  36. Legler, V.A., Razvitie Kamchatki v kainozoe s tochki zreniya teorii litosfernykh plit (Evolution of Kamchatka in the Cenozoic in Light of Lithospheric Plate Tectonics), Moscow: VINITI, 1977, pp. 137–169.

  37. Levin, V., Shapiro, N., Park, J., and Ritzwoller, M., Seismic evidence for catastrophic slab loss beneath Kamchatka, Nature, 2002, vol. 418, no. 15, pp. 763–767.

    Article  Google Scholar 

  38. Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., Igneous rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks, Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  39. Manea, V.C. and Manea, M., Thermal models beneath Kamchatka and the Pacific plate rejuvenation from a mantle plume impact, Volcanism and Subduction. The Kamchatka Region, Eiuchelberger, J., Gordeev, E., and Kasahara, M., Eds., Geophys. Monogr. Ser., 2009, vol. 172, pp. 77–91.

    Google Scholar 

  40. Martynov Yu.A., Khanchuk A.I., Kimura J.-I., et al., Geochemistry and petrogenesis of volcanic rocks in the Kuril Island Arc, Petrology, 2010, vol. 18, no. 5, pp. 489–513.

    Article  Google Scholar 

  41. Martynov, Yu.A., Khanchuck, A.I., Grebennikov, A.V., et al., Late Mesozoic and Cenozoic volcanism of the East Sikhote-Alin area (Russian Far East): a new synthesis of geological and petrological data, Gondwana Res., 2017, vol. 47, pp. 358–371.

    Article  Google Scholar 

  42. Melekestsev, I.V., Vulkanizm i rel’efoobrazovanie (Volcanism and Relief Formation), Moscow: Nauka, 1980.

  43. Münker, C., Worner, G., Yogodzinski, G., and Churikova, T., Behavior of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 275–293.

    Article  Google Scholar 

  44. Nekrylov, N.A., Popov, D.V., Plechov, P.Yu., et al., Garnet–pyroxenite–derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky Volcano, Petrology, 2018, vol. 26, no. 4, pp. 329–350.

    Article  Google Scholar 

  45. Nikulin, A., Levin, V., Carr, M., Herzberg, C., and West, M., Evidence for two upper mantle sources driving volcanism in Central Kamchatka, Earth Planet. Sci. Lett., 2012, vol. 321–322, pp. 14–19.

    Article  Google Scholar 

  46. Perepelov, A.B., Geochemistry of Late Cenozoic High-Potassium Volcanic Series of the Kamchatka Island-Arc Series, Candidate’s (Geol.-Min.) Dissertation, Irkutsk, 1989.

  47. Perepelov, A.B., Cenozoic Magmatism of Kamchatka during Change of Geodynamic Settings, Doctoral (Geol.-Min.) Dissertation, Irkutsk: IGKh SO RAN, 2014.

  48. Petermann, M., Hirschmann, M.M., Hametner, K., et al., Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochem., Geophys., Geosyst., 2004, vol. 5, no. 5. doi 10.1029/2003GC000638

  49. Pevzner, M.M., Golotsenovyi vulkanizm Sredinnogo khrebta Kamchatki (Holocene Volcanism of the Sredinny Range of Kamchatka), Moscow: GEOS, 2015.

  50. Plank, T. and Langmuir, C.H., Tracing trace elements from sediment input to volcanic output at subduction zones, Nature, 1993, vol. 362, pp. 739–742.

    Article  Google Scholar 

  51. Plank, T. and Langmuir, C.H., The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 1998, vol. 145, pp. 325–394.

    Article  Google Scholar 

  52. Polyak, B.G. and Melekestsev, I.V., Productivity of volcanic edifices, Vulkanol. Seismol., 1981, no. 5, pp. 22–37.

  53. Popolitov, E.I. and Volynets, O.N., Geokhimicheskie osobennosti chetvertichnogo vulkanizma Kurilo-Kamchatskoi ostrovnoi dugi i nekotorye voprosy petrogenezisa (Geochemical Features of Quaternary Volcanism of the Kuril–Kamchatka Island Arc and Some Petrogenetic Problems), Novosibirsk: Nauka, 1981.

  54. Portnyagin, M., Bindeman, I., Hoernle, K., and Hauff, F., Geochemistry of primitive lavas of the Central Kamchatka depression: magma generation at the edge of the Pacific plate, Geophys. Monogr., 2007, vol. 172, pp. 199–239.

    Google Scholar 

  55. Portnyagin, M., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: towards quantitative modelling of subduction-related open magmatic systems, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 133–155.

    Article  Google Scholar 

  56. Ryan, J.G., Morris, J., Tera, F., et al., Cross-arc geochemical variations in the Kurile Arc as a function of slab depth, Science, 1995, vol. 270, pp. 625–627.

    Article  Google Scholar 

  57. Solov’ev, A.V., Brendon, M.T., Garver, J.I., et al., Collision of the Olyutor Island Arc with the Eurasian continental margin: kinematic and age aspects, Dokl. Earth Sci., 1998, vol. 361, no. 5, pp. 632–634.

    Google Scholar 

  58. Stefanov, Yu.M. and Shirokii, B.I., Metallogeniya verkhnego strukturnogo etazha Kamchatki (Metallogeny of the Upper Structural Stage of Kamchatka), Moscow: Nauka, 1980.

  59. Straub, S.M., Gomez-Tuena, A., Stuart, F.M., et al., Formation of hybrid arc andesites beneath thick continental crust, Earth Planet. Sci. Lett., 2011, vol. 303, nos. 3–4, pp. 337–347.

    Article  Google Scholar 

  60. Tollstrup, D.L., Gill, J.A., Kent, A., et al., Across-arc geochemical trends in the Izu–Bonin arc: contributions from the subducting slab, revisited, Geochem., Geophys., Geosyst., 2010, vol. 11. doi 10.1029/2009GC002847

  61. Valley, J.W., Kitchen, N., Kohn, M.J., et al., UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5223–5231.

    Article  Google Scholar 

  62. Volynets, O.N., Geochemical types, petrology, and genesis of Late Cenozoic volcanic rocks from the Kurile–Kamchatka island-arc system, Int. Geol. Rev., 1994, vol. 36, pp. 373–405.

    Article  Google Scholar 

  63. Volynets, O.N., Patoka, M.G., Filosofova, T.M., and Chubarov, V.M., First find of alkaline mafic minerals in the Late Cenozoic lavas of Kamchatka, Dokl. Akad. Nauk SSSR, 1983, vol. 269, no. 5, pp. 1182–1185.

    Google Scholar 

  64. Volynets, O.N., Antipin, V.S., Anoshin, G.N., et al., Petrology and geochemistry of island-arc potassic basalts, Materialy UP Vsesoyuz. petrograf. soveshch. Tez. Dokl. (Proceedings of All-Union Petrographic Conference), Novosibirsk: IGKh SO RAN, 1986, vol. 1, pp. 83–84.

  65. Volynets, A., Churikova, T., Wörner, G., et al., Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back-arc region: implications for subduction geometry and slab history at the Pacific–Aleutian junction, Contrib. Mineral. Petrol., 2010, vol. 159, no. 5, pp. 659–687.

    Article  Google Scholar 

  66. Volynets, A.O., Woerner, G., and Przybilla, R., Oxygen isotope composition in the Miocene–Quaternary volcanic rocks of the Sredinny Range, Kamchatka and composition of magma sources, Sovremennye problemy geokhimii: Materialy Vseross. soveshch. (s uchastiem inostrannykh uchenykh) (Modern Geochemical Problems. Proc. All-Russian Conference (with International Participation), Irkutsk: Izd-vo Instituta geografii im. V.B. Sochavy SO RAN, 2012, vol. 2, pp. 38–40.

  67. Widom, E., Kepezhinskas, P., and Defant, M.J., Os and Sr isotope signatures in Kamchatka adakites, Nb-rich arc basalts and mantle pyroxenites: inferences on mantle and crustal processes, AGU Fall Meeting Abstracts, 2003, vol. 1, p. 0369.

  68. Yogodzinski, G.M., Lees, J.M., Churikova, T.G., et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plate edge, Nature, 2001, vol. 409, pp. 500–504.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.V. Portnyagin and F. Hauff (GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany) for help with the analytical work and continuous discussions of many aspects of this study. The content of the manuscript, the accuracy of the formulations, and the final version of the manuscript were much improved thanks to constructive criticism from A.A. Ariskin (Moscow State University) and two anonymous reviewers.

Funding

This study was financially supported by the Russian Foundation for Basic Research, project nos. 16-35-00138/17 mol_a, № 17-15-00883, and № 18-05-00041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Martynov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, M.Y., Martynov, Y.A. & Perepelov, A.B. Evolution of the Isotopic-Geochemical Composition of Rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and Its Relations to the Tectonic Restyling of Kamchatka in the Neogene. Petrology 27, 265–290 (2019). https://doi.org/10.1134/S0869591119030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119030020

Keywords:

Navigation