Skip to main content
Log in

TiO2 Nanostructures (TiO2-NSs): Synthesis, Characterization and Evaluation of Their Toxicity in the Swiss albino Mouse

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, TiO2 nanostructures (TiO2-NSs) were obtained at low temperature, using the sol–gel method, and their toxicity was evaluated in Swiss albino mice. For the synthesis, ethanol solvent was used and the concentration of the surfactant, cetyltrimethyl ammonium bromide (CTAB), was modified to determine its effect on the characteristics of the final product. Characterization of the synthesized TiO2-NSs was carried out using IR spectroscopy, X-ray diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). The solids obtained, without heat treatment, showed an amorphous structure. When these were treated at 450 °C, they crystallized in an anatase type phase, independent of CTAB concentration, with a crystallite size of 3–5 nm. The particles showed a spheroidal or needle-like shape, with a nanometric size (100 nm), and formed spheroidal agglomerates (between 1 and 5 μm) or mesoporous structures, for the 6 mm concentration of CTAB. Additionally, the toxicity of the NSs synthesized was determined, using 3 mm CTAB and treated at 450 °C, giving doses of 5 mg/kg, 50 mg/kg, 300 mg/kg of TiO2-NSs to mice prepared for this test. The results of the analysis of the liver biopsies of the animals, on which euthanasia was practiced, showed that the best effect was the 300 mg/kg dose, where alterations in the mitochondria were observed, with distortion in their normal structure (fragmentation) and strong involvement of its outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from the Ref. [50])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.J. Heiligtag, M. Niederberger, Mater. Today 16, 262 (2013)

    Article  CAS  Google Scholar 

  2. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  3. R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, L. Manna, Phys. Rep. 501, 75 (2011)

    Article  CAS  Google Scholar 

  4. C. Buzea, I.I. Pacheco, K. Robbie, Biointerphases 2, MR17 (2007)

    Article  PubMed  Google Scholar 

  5. G.L. Nealon, B. Donnio, R. Greget, J.P. Kappler, E. Terazzi, J.L. Gallani, Nanoscale 4, 5244 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. M. De, P.S. Ghosh, V.M. Rotello, Adv. Mater. 20, 4225 (2008)

    Article  CAS  Google Scholar 

  7. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. S.K. Verma, A.K. Tiwari, Mater. Today 2, 3638 (2015)

    Google Scholar 

  9. R. Prasad, A. Bhattacharyya, Q.D. Nguyen, Front. Microbiol. 8, 1014 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  10. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011)

    Article  CAS  Google Scholar 

  12. J.F. Banfield, D.R. Veblen, Am. Miner. 77, 545 (1992)

    CAS  Google Scholar 

  13. M. Kaneko, I. Okura (eds.), Photocatalysis: science and technology (Kodansha-Spring Verlag, New York, 2002)

    Google Scholar 

  14. M. Anpo, P.V. Kamat (eds.), Environmentally benign photocatalysts (Springer Science + Business Media, New York, 2010)

    Google Scholar 

  15. E. Topoglidis, A.E. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, J.R. Durrant, Anal. Chem. 70, 5111 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Z. Zhang, A. Kladi, X.E. Verykios, J. Phys. Chem. 98, 6804 (1994)

    Article  CAS  Google Scholar 

  17. M.M. Shubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76, 143 (2001)

    Article  Google Scholar 

  18. J. Geserick, T. Froeschl, N. Huesing, G. Kucerova, M. Makosch, T. Diemant, S. Ecckle, R.J. Behm, Dalton Trans. 40, 3269 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. W.P. Hsu, R. Yu, E. Matijevic, J. Colloid Interface Sci. 156, 56 (1993)

    Article  CAS  Google Scholar 

  20. A. Mills, H.R. Davis, D. Worsley, Chem. Soc. Rev. 22, 417 (1993)

    Article  CAS  Google Scholar 

  21. P.-C. Maness, S. Smolinski, D.M. Blake, Zh Huang, E.J. Wolfrum, W.A. Jacoby, Appl. Environ. Microbiol. 65, 4094 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Paz, Z. Luo, L. Rabenberg, A. Heller, J. Mater. Res. 10, 2842 (1995)

    Article  CAS  Google Scholar 

  23. Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Phys. Chem. Chem. Phys. 15, 4844 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. D.B. Warheit, E.M. Donner, Food Chem. Toxicol. 85, 138 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. X.X. Chen, B. Cheng, Y.X. Yang, A. Cao, J.H. Liu, L.J. Du, Y. Liu, Y. Zhao, H. Wang, Small 9, 1765 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Environ. Sci. Technol. 46, 2242 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S.G. Kumar, K.S.R.K. Rao, Nanoscale 6, 11574 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. D. Fattakhova-Rohlfing, A. Zaleska, T. Bein, Chem. Rev. 114, 9487 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. M. Cargnello, ThR Gordon, ChB Murray, Chem. Rev. 114, 9319 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Yin, A.P. Alivisatos, Nature 437, 664 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. C.J. Brinker, G.W. Scherer (eds.), Sol-gel science: The physics and chemistry of sol-gel processing (Academic Press, Boston, 1990)

    Google Scholar 

  32. J.P. Jolivet, Metal oxide chemistry and synthesis (Wiley, West Sussex, England, 2000)

    Google Scholar 

  33. A.C. Pierre, Introduction to sol-gel processing (Springer Sciences + Business, New York, 1998)

    Book  Google Scholar 

  34. G. Oberdorster, E. Oberdorster, J. Oberdorster, Environ. Health Perspect. 113, 823 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H. Shi, R. Magaye, V. Canstranove, J. Zhao, Part. Fibre Toxicol 10, 15 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Shakeel, F. Jabeen, S. Shabbir, M.S. Asghar, M.S. Khan, A.S. Chaudhry, Biol. Trace Elem. Res. 172, 1 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. American Conference of Governmental Industrial Hygienists (ACGIN): Threshold limit values and biological exposure índices for 1992–1993. Cincinnati- Ohio: American conference of Governmental Industrial Hygienists: 1992

  38. F. Grande, P. Tucci, Mini. Rev. Med. Chem. 16, 762 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. J. Hou, L. Wang, C. Wang, S. Zhang, H. Liu, S. Li, X. Wang, J. Environ. Sci. 75, 40 (2019)

    Article  Google Scholar 

  40. J. Cur, H. Liu, Y. Ze, Z. Zhang, Y. Hu, Z. Cheng, J. Cheng, R. Hu, G. Ga, L. Wang, M. Tang, F. Hong, Toxicol. Sci. 128, 171 (2012)

    Article  CAS  Google Scholar 

  41. L. Ma, J. Zhao, J. Wang, J. Liu, Y. Duan, H. Liu, N. Li, J. Yan, J. Ruan, H. Wang, F. Hong, Nanoscale Res. Lett. 4, 1275 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma et al., Toxicol. Lett. 168, 176 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. A. Morgan, M.A. Ibrahim, M.K. Galal, H.A. Ogaly, R.M. Abd-Elsalam, Biomed. Pharmacother. 103, 553 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. S.A.A. Azim, H.A. Darwish, M.Z. Rizk, S.A. Ali, M.O. Kadry, Exp. Toxicol. Pathol. 67, 305 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. M.Z. Rizk, S.A. Ali, M.A. Hamed, N.S. El-Rigal, H.F. Aly, H.H. Salh, Biomed. Pharmacother. 90, 466 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. R. Meena, R. Paulraj, Toxicol. Environ. Chem. 94, 146 (2012)

    Article  CAS  Google Scholar 

  47. D. Vasantharaja, V. Ramalingam, G.A. Reddy, Nanomed. J. 2, 46 (2015)

    CAS  Google Scholar 

  48. J. Hong, Y.Q. Zhang, Nanotechnology 27, 112001 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Y. Ochoa, Y. Ortegón, J.E. Rodríguez Páez, Rev. Fac. Ing. Univ. Antioq. 52, 29 (2010)

    CAS  Google Scholar 

  50. I.E. Fernández, J.E. Rodríguez-Páez, J. Alloys Compd. 780, 756 (2019)

    Article  CAS  Google Scholar 

  51. OECD. Acute oral toxicity—fixed dose procedure. 2001

  52. R. Liu, L. Yin, Y. Pu, G. Liang, J. Zhang, Y. Su, Z. Xiao, B. Ye, Prog. Nat. Sci. Mater. Int. 19, 573 (2009)

    Article  CAS  Google Scholar 

  53. S. Gui, Z. Zhang, L. Zheng, Y. Cui, X. Liu, N. Li, X. Sanga, Q. Suna, G. Gaoa, Z. Chenga, J. Chenga, L. Wanga, M. Tangc, F. Hong, Hazard. Mater. 195, 365 (2011)

    Article  CAS  Google Scholar 

  54. J.J. Bozzola, L.D. Russel, Electron microscopy: principles and techniques for biologists, 2nd edn. (Jones and Bartlett Publishers, Toronto, 1992), p. 450

    Google Scholar 

  55. L. Jiang, S. Li, W. Yu, J. Wang, Q. Sun, Z. Li, Colloids Surf. A 488, 20 (2016)

    Article  CAS  Google Scholar 

  56. J.L. Salager, Surfactantes en solución acuosa (Ministerio de ciencia y tecnologia, Merida venezuela, 1993), pp. 1–25

    Google Scholar 

  57. L.G. Wade, Quimica organica, 5th edn. (Pearson prentice hall, Madrid, 2002)

    Google Scholar 

  58. F.M. Menger, Acc. Chem. Res. 12, 111 (1979)

    Article  CAS  Google Scholar 

  59. C. Su, B.Y. Hong, C.M. Tseng, Catal. Today 96, 119 (2004)

    Article  CAS  Google Scholar 

  60. H.H. Beacham, Advances in chemistry (American Chemical Society, Washington, 1959), pp. 282–289

    Google Scholar 

  61. M.A. Vargas, J.E. Rodríguez-Páez, J. Non-Cryst, Solids 459, 192 (2017)

    CAS  Google Scholar 

  62. L. Tellez, F. Rubio, R. Peña Alonso, J. Rubio, Bol. Soc. Esp. Ceram. V 43, 883 (2004)

    Article  CAS  Google Scholar 

  63. M. Ocaña, V. Formés, J.V. García Ramos, C.J. Serna, J. Solid State Chem. 75, 364 (1988)

    Article  Google Scholar 

  64. M. Andrés-Vérges, M. Martínez-Gallego, J. Mater. Sci. 27, 3756 (1992)

    Article  Google Scholar 

  65. A.M. Guzmán, A.M. Fernández, Y. Franco, J.H. Bautista, J.E. Rodríguez-Páez, Rev. Acad. Colom. Cienc. 31, 530 (2007)

    Google Scholar 

  66. S. Doeuff, M. Henry, C. Sánchez, J. Livage, J. Non-Cryst. Solid 89, 206 (1987)

    Article  CAS  Google Scholar 

  67. H. Miyata, Y. Fukushima, Y. Kanno, S. Hayase, S. Hara, M. Watanabe, S. Kitamura, M. Takahashi, K. Kuroda, J. Mater. Chem. C3, 3869 (2015)

    Google Scholar 

  68. P. Dumas, N. Ea, J.C. Niepce, G. Watalle, J. Solid State Chem. 27, 317 (1979)

    Article  CAS  Google Scholar 

  69. J.P. Auffredic, D. Louër, React. Solids 4, 105 (1987)

    Article  CAS  Google Scholar 

  70. J. Jia, B. Yan, Hepatic injuries induced by engineered nanomaterials, Chapter 12, in Bioactivity of engineered nanoparticles (nanomedicine and nanotoxicology), ed. by Bing Yan, Hongyu Zhou, J.L. Gardea-Torresdey (Springer, Singapore, 2017), pp. 321–338

    Chapter  Google Scholar 

  71. J. Jia, F. Li, H. Zhou, Y. Bai, S. Liu, Y. Jiang, G. Jiang, B. Yan, Environ. Sci. Technol. 51, 9334 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. A. Rezaei, A. Farzinpour, A. Vaziry, A. Jalili, Biol. Trace Elem. Res. 185, 475 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. L. Wang, L. Yan, J. Liu, C. Chen, Y. Zhao, Anal. Chem. 90, 589 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. M.A. Vargas, J.E. Rodríguez-Páez, J. Clust. Sci. 30, 379 (2019)

    Article  CAS  Google Scholar 

  75. V.L. Prasanna, R. Vijayaraghavan, Langmuir 31, 9155 (2015)

    Article  CAS  Google Scholar 

  76. D.T. Jayaram, S. Runa, M.L. Kemp, C.K. Payne, Nanoscale 9, 7595 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. S.K. Verma, E. Jha, P.K. Panda, J.K. Das, A. Thirumurugan, M. Suar, S.K.S. Parashar, Nanomed. (London) 13, 43 (2018)

    Article  CAS  Google Scholar 

  78. H.T. Liu, L.L. Ma, J. Liu, J.F. Zhao, J.Y. Yan, F.S. Hong, Toxicol. Environ. Chem. 92, 175 (2010)

    Article  CAS  Google Scholar 

  79. S. Li, H.Y. Tan, N. Wang, Z.J. Zhang, L. Lao, C.W. Wong, Y. Feng, Int. J. Mol. Sci. 16, 28087 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out under project ID 3977, funded by the vice-Rectorate for Research at the University of Cauca (VRI Universidad del Cauca), Colombia. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Rodríguez-Páez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, I., Ceballos, A.J., Bolaños, H. et al. TiO2 Nanostructures (TiO2-NSs): Synthesis, Characterization and Evaluation of Their Toxicity in the Swiss albino Mouse. J Inorg Organomet Polym 30, 1049–1064 (2020). https://doi.org/10.1007/s10904-019-01242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01242-9

Keywords

Navigation