Skip to main content
Log in

Basaltic Volcanism of Island-Arc–Back-Arc Basin System (Altai Active Margin)

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The results of prior studies are generalized and the author’s data on the geology, geochemistry, and isotope geochronology of the Early–Middle Devonian volcanic series of Western Gorny Altai and Rudny Altai that are related to two large volcanic systems, the Altai–Minusinsk and Altai–Salair, respectively, are presented. The studied basalts have convergent geochemical characteristics between the rocks in back-arc basins and island arcs or their rear extension zones. It is considered that the back-arc-basin–island-arc system was developed in the Early–Middle Devonian on the Altai margin of the Siberian continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. P. Avdeiko, A. A. Palueva, and O. V. Kuvikas, “Adakites in subduction zones of the Pacific Ring: a review and analysis of geodynamic settings,” Vestn. KRAUNTs, Ser. Nauki Zemle, No. 1, 45–60 (2011).

    Google Scholar 

  2. G. A. Babin, A. G. Vladimirov, N. N. Kruk, S. A. Sergeev, N. V. Sennikov, A. S. Gibsher, and Yu. K. Sovetov, “Age of the initiation of Minusa Basins, Southern Siberia,” Dokl. Earth Sci.395 (3), 307–310 (2004).

    Google Scholar 

  3. N. A. Berzin and L. V. Kungurtsev, “Geodynamic interpretation of geological complexes of the Altae-Sayan area,” Geol. Geofiz. 37 (1), 63–81 (1996).

    Google Scholar 

  4. Great Altai (Geology and Metallogeny), Ed. by G. N. Shcherba, Kh. A. Bespaev, and B. A. D’yachkov (RIO VAK RK, Almaty, 1998) [in Russian].

    Google Scholar 

  5. M. M. Buslov, “Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults,” Russ. Geol. Geophys. 52 (1), 52–71 (2011).

    Article  Google Scholar 

  6. A. G. Vladimirov, N. N. Kruk, and S. N. Rudnev, “Geodynamics and granitoid magmatism of collisional orogenis,” Russ. Geol. Geophys. 44 (12), 1275–1292 (2003).

    Google Scholar 

  7. A. A. Vorontsov, G. S. Fedoseev, and S. V. Andryushchenko, “Devonian volcanism in the Minusa Basin in the Altai–Sayan area: geological, geochemical, and Sr-Nd isotopic characteristics of rocks, " Russ. Geol. Geophys. 54 (9), 1001–1025 (2013).

    Article  Google Scholar 

  8. I. V. Gas’kov, E. G. Distanov, I. A. Kalugin, and Yu. V. Tikunov, “Metallogenic specialization and petrochemical features of Devonian volcanism of Rudny Altai and Gorny Altai,” Geol. Geofiz. 40 (5), 703–715 (1999).

    Google Scholar 

  9. I. V. Gas’kov, “Peculiarities of evolution of sulfide ore-magmatic systems in the island-arc settings of Rudny Altai and South Urals,” Litosfera, No. 2, 17–39 (2015).

    Google Scholar 

  10. State Geological Map of the Russian Federation. 1 : 200 000. Altai Series. Sheet M-44-XI (Zmeinogorsk): Explanatory Note (VSEGEI, St. Petersburg, 2001) [in Russian].

  11. State Geological Map of the Russian Federation. 1 : 200 000. Altai Series. Sheet M-44-VII (Ust’-Kan): Explanatory Note (VSEGEI, St. Petersburg, 2001), p. 171 [in Russian].

  12. State Geological Map of the Russian Federation. 1 : 200 000. Altai Series. Sheet M-45-XIII (Ust’-Koksa): Explanatory Note (VSEGEI, St. Petersburg, 2008) [in Russian].

  13. Ya. M. Gutak, F. L. Valieva, and O. V. Murzin, “Korbalikha Formation of Rudny Altai and proble of age of the Alei metamorphic complex,” 300th Anniversary of Mining-Geological Survey of Russia: History of Mining, Geological Structure, and Mineral Resources of Altai (AGU, Barnaul 2000), pp. 200–205 [in Russian].

    Google Scholar 

  14. N. L. Dobretsov, “Evolution of structure of the Urals, Kazakhstan, Tien Shan, and Altai-Sayan region within the Ural-Mongolian fold belt (Paleoasian Ocean),” Russ. Geol. Geophys. 44 (1–2), 3–26 (2003).

    Google Scholar 

  15. E. A. Elkin, N. V. Sennikov, M. M. Buslov, A. Yu. Yazikov, R. T. Gratsianova, and N. K. Bakharev, “Paleo-geographical reconstructions of western Altai–Sayan region in the Ordovician, Silurian, and Devonian and their geodynamic interpretation,” Geol. Geofiz. 35 (7–8), 118–145 (1994).

    Google Scholar 

  16. L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Moscow, 1990), Vol. I [in Russian].

    Google Scholar 

  17. M. S. Kozlov, “Middle Paleozoic paleotectonics and paleovolcanism of Southwestern Altai,” Geol. Geofiz. 36 (12), 17–34 (1995).

    Google Scholar 

  18. Correlation of Magmatic and Metamorphic Complexes of the Western Altai-Sayan Fold Area, Ed. by S. P. Shokal’skii, G. A. Babin, and A. G. Vladimirov (SO RAN, Novosibirsk, 2000) [in Russian].

  19. P. D. Kotler, N. N. Kruk, S. V. Khromykh, and O. V. Navozov, “Composition and sources of sedimentary sequences of the Kalba–Narym terrane (Eastern Kazakhstan),” Vestn. Gos. Tomsk. Univ. 400, 345–353 (2015).

    Google Scholar 

  20. N. N. Kruk, S. N. Rudnev, A. G. Vladimirov, and D. Z. Zhuravlev, “Sm–Nd isotope systematics of granitoids from the Western Altai–Sayan fold zone,” Dokl. Earth Sci.366 (2), 569–571 (1999).

    Google Scholar 

  21. N. N. Kruk and N. V. Sennikov, “Geological position, geochemistry, and geodynamic formation environments of Late Givetian–Early Frasnian basalts in the Central Gornyi Altai region,” Dokl. Earth Sci. 446 (2), 1151–1156 (2012).

    Article  Google Scholar 

  22. N. N. Kruk, “Continental crust in Rudny Altai: stages of formation and evolution and indicator role of granitoids,” Russ. Geol. Geophys. 56 (8), 1091–1113 (2015).

    Article  Google Scholar 

  23. M. L. Kuibida, N. N. Kruk, and S. P. Shokal’skii, “Subduction plagiogranites of Rudny Altai: age and composition characteristics,” Dokl. Earth Sci. 464 (1), 914–918 (2015).

    Article  Google Scholar 

  24. M. L. Kuibida, V. I. Krupchatnikov, O. M. Popova, R. A. Shelepaev, V. A. Yakovlev, and M. Cherdantseva, “Initial mafic volcanism of the Altai active margin of the Siberian Continent (Rudny Altai): geochemical characteristics and geochronology,” Proceedings of 4th All-Russian Conference with International Participation “Geological Processes in Subduction, Collision, and Strike-Slip Margin Settings, Vladivostok, Russia (Dal’nauka, Vladivostok, 2018), pp. 180–183 [in Russian].

  25. M. L. Kuibida, “Age and composition of rhyolites of the Melnichny–Sosnovsky volcanic complex (Rudny Altai),” in 10th All-Russian Petrographic Conference with International Participation “Petrology of Magmatic and Metamorphic Complexes,” Tomsk, Russia, 2018 (Tomsk, 2018), pp. 219–225 [in Russian].

  26. M. L. Kuibida, V. I. Timkin, V. A. Krivchikov, O. V. Murzin, V. I. Krupchatnikov, O. M. Popova, N. N. Kruk, S. N. Rudnev, Ya. V. Kuibida, S. P. Shokal’skii, N. I. Gusev, C. Komiya, Sh. Aoki, and M. Sun, Middle Paleozoic rhyolites of Gorny and Rudny Altai: age and compositional features,” Dokl. Earth Sci. (in press).

  27. M. L. Kuibida, N. N. Kruk, A. G. Vladimirov, O. V. Murzin, S. P. Shokal’skii, N. I. Gusev, Ya. V. Kuibida, E. A. Kruk, E. I. Moroz, V. G. Vladimirov, and S. N. Rudnev, “Geochemical characteristics and geochronology of bimodal granitoid magmatism of Rudny Altai: on problem of transform Asian margin,” Litosfera, 2019 (in press).

  28. N. P. Kul’kov, Lower and Middle Devonian Stratigraphy of Rudny Altai (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  29. M. G. Lomize, “Initial subduction phase at continental margins,” Geotectonics 37 (5), 412–426 (2003).

    Google Scholar 

  30. A. Yu. Martynov, Yu. A. Martynov, A. V. Rybin, and D. I. Kimura, “Role of back-arc tectonics in the origin of subduction magmas: new Sr, Nd, and Pb isotope data from Middle Miocene lavas of Kunashir Island (Kurile Island Arc),” Russ. Geol. Geophys. 56 (3), 363–378 (2015).

    Article  Google Scholar 

  31. Yu. A. Martynov, V. V. Golozubov, and A. I. Khanchuk, “Mante diapirism at convergent boundaries (Sea of Japan),” Russ. Geol. Geophys. 57 (5), 745–755 (2016).

    Article  Google Scholar 

  32. D. V. Metelkin, V. A. Vernikovskii, and A. Yu. Kazanskii, “Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions,” Russ. Geol. Geophys. 53 (7), 675–688 (2012).

    Article  Google Scholar 

  33. A. A. Mossakovskii, S. V. Ruzhentsev, and S. G. Samygin, “Central Asian orogenic belt: geodynamic evolution and history of formation,” Geotektonika 6, 3–33 (1993).

    Google Scholar 

  34. G. V. Polyakov, V. N. Fovgal’, A. E. Teleshev, G. S. Fedoseev, V. I. Bognibov, “Lateral variability of volcanic–intrusive associations of zones of Middle Paleozoic activation of the Caledonian–Baikalian structures of the Altai-Sayan fold area,” Dokl. Akad Nauk SSSR 203 (6), 1374–1377 (1972).

    Google Scholar 

  35. M. Yu. Promyslova, “New concept of the geodynamic nature of the Devonian ore-bearing basalt–rhyolite formation in Rudnyi Altai,” Dokl. Earth Sci.399A (9), 1209–1211 (2004).

    Google Scholar 

  36. I. L. Rotarash, S. G. Samygin, and E. A. Gredyushko, “Devonian active continental margin at the Southwestern Altai,” Geotektonika, No. 1, 44–59 (1982).

    Google Scholar 

  37. S. V. Saraev, T. P. Baturina, N. K. Bakharev, N. G. Izokh, and N. V. Sennikov, “Middle–Late Defonian island-arc volcanosedimentary complexes in northwestern Rudny Altai,” Russ. Geol. Geophys. 53 (10), 982–9963 (2012).

    Article  Google Scholar 

  38. V. P. Simanenko, A. I. Malinovskii, and V. V. Golozubov, “Early Cretaceous basalts of the Kema terrane—a fragment of the Moneron–Samarga island-arc system,” Tikhookean. Geol. 23 (2), 30–51 (2004).

    Google Scholar 

  39. A. I. Khanchuk and V. V. Golozubov, “Regime of transform margin and orogenesis,” in Pacific Ore Belt: Proceedings of New Studies (Dal’nauka, Vladivostok, 2008), pp. 340–345 [in Russian].

    Google Scholar 

  40. V. I. Chernov, “Problem of petrochemical cycle of volcanism and relationships between sources of mafic and felsic magmas: evidence from Rudny Altai,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 1, 49–57 (1973).

  41. V. V. Yarmolyuk, M. I. Kuz’min, and A. A. Vorontsov, “West Pacific-type convergent boundaries and their role in the formation of the Central Asian Fold Belt,” Russ. Geol. Geophys. 54 (12), 1427–1441 (2013).

    Article  Google Scholar 

  42. M. L. Bas, R. L. Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali–silica diagram,” J. Petrol. 27 (3), 745–750 (1986).

    Article  Google Scholar 

  43. B. Cabanis and M. Lecolle, “Le diagramme La/10–Y/15–Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale,” C.R. Acad. Sci. Ser. II, 309, 2023–2029 (1989).

    Google Scholar 

  44. W. J. Collins, “Nature of extensional accretionary orogens,” Tectonics 21 (4) (2002).

  45. P. G. DeCelles, “Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, Western USA,” Am. J. Sci. 304 (2), 105–168 (2004).

    Article  Google Scholar 

  46. M. J. Defant, T. E. Jackson, M. S. Drummond, J. Z. De Boer, H. Bellon, M. D. Feigenson, R. C. Maury, and R. H. Stewart, “The geochemistry of young volcanism throughout western Panama and zoutheastern Costa Rica: an overview,” J. Geol. Soc. London 149, 569–579 (1992).

    Article  Google Scholar 

  47. D. A. Foster, C. Schafer, C. M. Fanning, and D. W. Hyndman, “Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholiths,” Tectonophysics 342 (3–4), 313–350 (2001).

    Article  Google Scholar 

  48. S. Glorie, J. De Grave, M. Buslov, F. I. Zhimulev, A. Izmer, W. Vandoorne, and M. A. Elburg, “Formation and Palaeozoic evolution of the Rudny-Altai–Altai–Mongolia suture zone (South Siberia): zircon U/Pb constraints on the igneous record,” Gondwana Res. 20 (2-3), 465–484 (2011).

    Article  Google Scholar 

  49. K. Guo, et al., “Geochemical characteristics of major and trace elements in the Okinawa Trough basaltic glass,” Acta Oceanologica Sinica, No. 2, 14–24 (2018).

    Article  Google Scholar 

  50. P. Hollings and R. Kerrich, “An Archean arc basalt-Nb-enriched basalt–adakite association: the 2.7 Ga Confederation Assemblage of the Birch-Uchi Greenstone Belt, Superior Province,” Contrib. Mineral. Petrol. 139 (2), 208–226 (2000).

    Article  Google Scholar 

  51. P. Hollings, “Archean Nb-enriched basalts in the northern Superior Province,” Lithos 64 (1), 1–14 (2002).

    Article  Google Scholar 

  52. J. D. A. Kapp, C. F. Miller, and J. S. Miller, “Ireteba Pluton, Eldorado Mountains, Nevada: late, deep-source, peraluminous magmatism in the Cordilleran interior,” J. Geol. 110 (6), 649–669 (2002).

    Article  Google Scholar 

  53. N. S. Keller, R. J. Arculus, J. Hermann, and S. Richards, “Submarine back-arc lava with arc signature: Fonualei spreading center, northeast Lau Basin, Tonga,” J. Geophys. Res.: Solid Earth 113 (B8), (2008).

  54. N. N. Kruk, S. N. Rudnev, A. G. Vladimirov, S. P. Shokalsky, V. P. Kovach, P. A. Serov, and N. I. Volkova, “Early–Middle Paleozoic granitoids in Rudny Altai, Russia: implications for continental crust history and magma sources,” J. Asian Earth Sci. 42 (5), 928–948 (2011).

    Article  Google Scholar 

  55. J. Letouzey and M. Kimura, “Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent,” Mar. Pet. Geol. 2 (2), 111–130 (1985).

    Article  Google Scholar 

  56. X. Li, Z. Zeng, X. Wang, S. Chen, Y. Ma, H. Yang, and Z. Chen, “Petrogenesis of basalt from the Middle Okinawa Trough: new insights from olivine-hosted melt inclusions,” Geol. J. 37 (1), 73–88 (2018).

    Google Scholar 

  57. J. A. Pearce and J. R. Cann, “Tectonic setting of basic volcanic rocks determined using trace element analyses,” Earth Planet. Sci. Lett. 19, 290–300 (1973).

    Article  Google Scholar 

  58. J. A. Pearce and R. J. Stern, “Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives,” Geophys. Monogr. Am. Geophys. Union 63, (2006).

  59. A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey,” Contrib. Mineral. Petrol. 58 (1), 63–81 (1976).

    Article  Google Scholar 

  60. I. Safonova, R. Seltmann, A. Kroner, D. Gladkochub, K. Schulmann, W. Xiao, T. Kim, T. Komiya, and M. Sun, “A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific),” Episodes 34, 186–194 (2011).

    Google Scholar 

  61. M. Sato, K. Shuto, R. Nohara-Imanaka, E. Takazawa, Y. Osanai, and N. Nakano, “Repeated magmatism at 34 Ma and 23–20 Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan Arc,” Lithos 205, 60–83 (2014).

    Article  Google Scholar 

  62. B. A. Natal’in and V. S. Burtman, “Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia,” Nature 364, 299–307 (1993).

    Article  Google Scholar 

  63. J. W. Shervais, “Ti–V plots and the petrogenesis of modern and ophiolitic lavas,” Earth Planet. Sci. Lett. 59, 101–118 (1982).

    Article  Google Scholar 

  64. R. Shinjo, S. L. Chung, Y. Kato, and M. Kimura, “Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin,” J. Geophys. Res. Solid Earth 104 (B5), 10591–10608 (1999).

    Article  Google Scholar 

  65. R. Shinjo, J. D. Woodhead, and J. M. Hergt, “Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications,” Contrib. Mineral. Petrol. 140 (3), 263–282 (2000).

    Article  Google Scholar 

  66. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42. 313–345 (1989).

  67. Y. Tamura, M. Yuhara, and T. Ishii, “Primary arc basalts from Daisen Volcano, Japan: equilibrium crystal fractionation versus disequilibrium fractionation during supercooling,” J. Petrol. 41 (3), 431–448 (2000).

    Article  Google Scholar 

  68. Y. Tatsumi, N. Ishikawa, K. Anno, K. Ishizaka, T. Itaya, “Tectonic setting of high-Mg andesite magmatism in the SW Japan Arc: K-Ar chronology of the Setouchi volcanic belt,” Geophys. J. Intern 144 (3), 625–631 (2001).

    Article  Google Scholar 

  69. Q. Wang, D. A. Wyman, J. Xu, P. Jian, Z. Zhao, C. Li, and B. He, “Early Cretaceous adakitic granites in the northern Dabie Complex, Central China: implications for partial melting and delamination of thickened lower crust,” Geochim. Cosmochim. Acta 71 (10), 2609–2636 (2007).

    Article  Google Scholar 

  70. B. F. Windley, D. Alexeiev, W. Xiao, A. Kroner, G. Badarch, “Tectonic models for accretion of the Central Asian Orogenic Belt,” J. Geol. Soc. 164, 31–47 (2007).

    Article  Google Scholar 

  71. D. A. Wyman, J. A. Ayer, and J. R. Devaney, “Niobium-enriched basalts from the Wabigoon Subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone,” Earth Planet. Sci. Lett. 179 (1), 21–30 (2000).

    Article  Google Scholar 

  72. W. Xiao and M. Santosh, “The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth,” Gondwana Res 25, 1429–1444 (2014).

    Article  Google Scholar 

  73. W. L. Xu, Q. H. Wang, D. Y. Wang, J. H. Guo, and F. P. Pei, “Mesozoic adakitic rocks from the Xuzhou-Suzhou Area, Eastern China: evidence for partial melting of delaminated lower continental crust,” J. Asian Earth Sci. 27 (4), 454–464 (2006).

    Article  Google Scholar 

  74. Y. Zhang, Z. Zeng, S. Chen, X. Wang, and X. Yin, “New insights into the origin of the bimodal volcanism in the Middle Okinawa Trough: not a basalt–rhyolite differentiation process,” Frontiers of Earth Sci 12 (2), 325–338 (2018).

    Article  Google Scholar 

  75. G. Zhu, M. Niu, C. Xie, and Y. Wang, “Sinistral to normal faulting along the Tan-Lu Fault Zone: evidence for geodynamic switching of the East China continental margin,” J. Geol. 118 (3), 277–293 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.N. Kruk, Dr. Sci. (Geol. Mineral.); A.E. Izokh; R.A. Shelepaev, Cand. Sci. (Geol. Mineral.); and I.Yu. Safonova.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no, 14Y26.31.0018), the Russian Foundation for Basic Research (project no. 16-05-01021) according to the plan of the State Assignment of the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Kuibida.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Recommended by A. I. Khanchuk

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuibida, M.L. Basaltic Volcanism of Island-Arc–Back-Arc Basin System (Altai Active Margin). Russ. J. of Pac. Geol. 13, 297–309 (2019). https://doi.org/10.1134/S1819714019030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019030059

Keywords:

Navigation