Skip to main content
Log in

On the influence of the interaction graph on a finite dynamical system

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

A finite dynamical system (FDS) is a system of multivariate functions over a finite alphabet, that is typically used to model a network of interacting entities. The main feature of a finite dynamical system is its interaction graph, which indicates which local functions depend on which variables; the interaction graph is a qualitative representation of the interactions amongst entities on the network. As such, a major problem is to determine the effect of the interaction graph on the dynamics of the FDS. In this paper, we are interested in three main properties of an FDS: the number of images (the so-called rank), the number of periodic points (the so-called periodic rank) and the number of fixed points. In particular, we investigate the minimum, average, and maximum number of images (or periodic points, or fixed points) of FDSs with a prescribed interaction graph and a given alphabet size; thus yielding nine quantities to study. The paper is split into two parts. The first part considers the minimum rank, for which we derive the first meaningful results known so far. In particular, we show that the minimum rank decreases with the alphabet size, thus yielding the definition of an absolute minimum rank. We obtain lower and upper bounds on this absolute minimum rank, and we give classification results for graphs with very low (or highest) rank. The second part is a comprehensive survey of the results obtained on the nine quantities described above. We not only give a review of known results, but we also give a list of relevant open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aracena J (2008) Maximum number of fixed points in regulatory Boolean networks. Bull Math Biol 70:1398–1409

    Article  MathSciNet  MATH  Google Scholar 

  • Aracena J, Salinas L. Private communication

  • Aracena J, Demongeot J, Goles E (2004) Fixed points and maximal independent sets in AND–OR networks. Discrete Appl Math 138:277–288

    Article  MathSciNet  MATH  Google Scholar 

  • Aracena J, Richard A, Salinas L (2014) Maximum number of fixed points in AND–OR–NOT networks. J Comput Syst Sci 80(7):1175–1190

    Article  MathSciNet  MATH  Google Scholar 

  • Aracena J, Richard A, Salinas L (2017) Number of fixed points and disjoint cycles in monotone Boolean networks. SIAM J Discrete Math 31:1702–1725

    Article  MathSciNet  MATH  Google Scholar 

  • Atkins R, Rombach P, Skerman F (2017) Guessing Numbers of Odd Cycles. Electron J Comb 24(1):1–20

    MathSciNet  MATH  Google Scholar 

  • Bang-Jensen J, Gutin G (2009) Digraphs: theory, algorithms and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bridoux F, Castillo-Ramirez A, Gadouleau M (2015) Complete simulation of automata networks. arXiv.1504.00169

  • Christofides D, Markström K (2011) The guessing number of undirected graphs. Electron J Comb 18(1):1–19

    MathSciNet  MATH  Google Scholar 

  • Comet J-P, Richard A, Noual M, Aracena J, Calzone L, Demongeot J, Kaufman M, Naldi A, Snoussi EH, Thieffry D (2013) On circuit functionality in Boolean networks. Bull Math Biol 75(6):906–919

    Article  MathSciNet  MATH  Google Scholar 

  • Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discrete Appl Math 160:398–415

    Article  MathSciNet  MATH  Google Scholar 

  • Didier G, Remy E (2012) Relations between gene regulatory networks and cell dynamics in Boolean models. Discrete Appl Math 160:2147–2157

    Article  MathSciNet  MATH  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Flajolet P, Odlyzko AM (1989) Random mapping statistics. Research Report, INRIA RR-1114, pp 1–26

  • Gadouleau M (2017) On the stability and instability of finite dynamical systems with prescribed interaction graphs. arXiv:1709.02171

  • Gadouleau M (2018a) On the rank and periodic rank of finite dynamical systems. Electron J Comb 25(3):3–48

    MathSciNet  MATH  Google Scholar 

  • Gadouleau M (2018b) On the possible values of the entropy of undirected graphs. J Graph Theory 88:302–311

    Article  MathSciNet  MATH  Google Scholar 

  • Gadouleau M, Richard A (2016) Simple dynamics on graphs. Theor Comput Sci 628:62–77

    Article  MathSciNet  MATH  Google Scholar 

  • Gadouleau M, Riis S (2011) Graph-theoretical constructions for graph entropy and network coding based communications. IEEE Trans Inf Theory 57(10):6703–6717

    Article  MathSciNet  MATH  Google Scholar 

  • Gadouleau M, Richard A, Riis S (2015) Fixed points of Boolean networks, guessing graphs, and coding theory. SIAM J Discrete Math 29(4):2312–2335

    Article  MathSciNet  MATH  Google Scholar 

  • Gadouleau M, Richard A, Fanchon E (2016) Reduction and fixed points of Boolean networks and linear network coding solvability. IEEE Trans Inf Theory 62(5):2504–2519

    Article  MathSciNet  MATH  Google Scholar 

  • Goles E (1985) Dynamics of positive automata networks. Theor Comput Sci 41:19–32

    Article  MathSciNet  MATH  Google Scholar 

  • Goles E, Noual M (2012) Disjunctive networks and update schedules. Adv Appl Math 48(5):646–662

    Article  MathSciNet  MATH  Google Scholar 

  • Goles E, Tchuente M (1983) Iterative behaviour of generalized majority functions. Math Soc Sci 4:197–204

    Article  MathSciNet  MATH  Google Scholar 

  • Noual M, Sené S (2017) Synchronism versus asynchronism in monotonic Boolean automata networks. Nat Comput 17:393–402

    Article  MathSciNet  Google Scholar 

  • Paulevé L, Richard A (2010) Topological fixed points in Boolean networks. C R Acad Sci Ser I Math 348:825–828

    MathSciNet  MATH  Google Scholar 

  • Riis S (2006) Utilising public information in network coding. In: Ahlswede R, Bäumer L, Cai N, Aydinian H, Blinovsky V, Deppe C, Mashurian H (eds) General theory of information transfer and combinatorics, vol 4123. Lecture notes in computer science. Springer, Berlin, pp 866–897

    Chapter  Google Scholar 

  • Riis S (2007a) Graph entropy, network coding and guessing games. arXiv:0711.4175

  • Riis S (2007b) Information flows, graphs and their guessing numbers. Electron J Comb 14:1–17

    MathSciNet  MATH  Google Scholar 

  • Robert F (1980) Iterations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412

    Article  MathSciNet  MATH  Google Scholar 

  • Scheinerman ER, Ullman DH (1997) Fractional graph theory. Wiley, Hoboken

    MATH  Google Scholar 

  • Shenvi S, Dey BK (2010) A simple necessary and sufficient condition for the double unicast problem. In: Proceedings of ICC 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilien Gadouleau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadouleau, M. On the influence of the interaction graph on a finite dynamical system. Nat Comput 19, 15–28 (2020). https://doi.org/10.1007/s11047-019-09732-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09732-y

Keywords

Navigation