Skip to main content
Log in

Rational Taxonomy of Yersinia pestis

  • PROBLEM PAPER
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Plague is a zoonotic infection whose pathogenic agent has caused hundreds of million human deaths. A broad range of hosts and vectors, along with the geographical dispersion of natural plague foci characterized by different ecological conditions, contribute to the formation of the polytypic Y. pestis species, the result of selection of the genetic variants specific for certain natural foci. Through the efforts of a world consortium of scientists, a global coordinated phylogram of the SNP types of the plague pathogen has been developed. However, debates on the intraspecies Y. pestis taxonomy still continue on the vast Russian expanses. The work of a taxonomist has many specific, individual features, formed on the basis of individual experience. It is important in this kind of work to follow an old rule which requires that borders should be placed where they have been put by nature, and should not be put where nature has not put them. With that in mind, we suggest here the rational variant of the plague pathogen nomenclature constructed in accordance with the rules set out in the International Code of Bacterial Nomenclature and Evolutionary Taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anisimov, A.P., Lindler, L.E., and Pier, G.B., Intraspecific diversity of Yersinia pestis, Clin. Microbiol., 2004, vol. 17, no. 2, pp. 434–464.

    Article  CAS  Google Scholar 

  2. Cui, Y. and Song, Y., Genome and Evolution of Yersinia pestis, Adv. Exp. Med. Biol., 2016, vol. 918, pp. 171–192. https://doi.org/10.1007/978-94-024-0890-4_6

    Article  CAS  PubMed  Google Scholar 

  3. Yersin, A., La peste bubonique à Hong-Kong, Ann. Inst. Pasteur (Paris), 1894, vol. 8, p. 662–667.

    Google Scholar 

  4. Qi, Z., Cui, Y., Zhang, Q., and Yang, R., Taxonomy of Yersinia pestis, Adv. Exp. Med. Biol., 2016, vol. 918, pp. 35–78. https://doi.org/10.1007/978-94-024-0890-4_3

    Article  CAS  PubMed  Google Scholar 

  5. Morelli, G., Song, Y., Mazzoni, C.J., et al., Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity, Nat. Genet., 2010, vol. 42, no. 12, pp. 1140–1143. https://doi.org/10.1038/ng.705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Devignat, R., Variétés de l’espèce Pasteurella pestis: nouvelle hyphothèse, Bull. W. H. O., 1951, vol. 4, no. 2, pp. 247–263.

    CAS  PubMed  Google Scholar 

  7. Tumanskii, V.M., On classification of varieties of the plague pathogen, Zh. Mikrobiol., Epidemiol. Immunobiol., 1957, vol. 6, pp. 3–7.

    Google Scholar 

  8. Adair, D.M., Worsham, P.L., Hill, K.K., et al., Diversity in a variable-number tandem repeat from Yersinia pestis, J. Clin. Microbiol., 2000, vol. 38, no. 4, pp. 1516–1519.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Klevytska, A.M., Price, L.B., Schupp, J.M., et al., Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome, J. Clin. Microbiol., 2001, vol. 39, no. 9, pp. 3179–3185. https://doi.org/10.1128/JCM.39.9.3179-3185.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Motin, V.L., Georgescu, A.M., Elliott, J.M., et al., Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD), J. Bacteriol., 2002, vol. 184, vol. 4, pp. 1019–1027.

  11. Achtman, M., Morelli, G., Zhu, P., et al., Microevolution and history of the plague bacillus, Yersinia pestis, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 51, pp. 17 837–17 842. https://doi.org/10.1128/jb.184.4.1019-1027.2002

    Article  Google Scholar 

  12. Zhou, D., Tong, Z., Song, Y., et al., Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus, J. Bacteriol., 2004, vol. 186, no. 15, pp. 5147–5152. https://doi.org/10.1128/JB.186.15.5147-5152.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valtueña, A.A., Mittnik, A., Key, F.M., et al., The stone age plague and its persistence in Eurasia, Curr. Biol., 2017, vol. 27, no. 23, pp. 3683–3691. https://doi.org/10.1016/j.cub.2017.10.025

    Article  CAS  Google Scholar 

  14. Cui, Y., Yang, X., Xiao, X., et al., Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries, Infect. Genet. Evol., 2014, vol. 26, pp. 172–179. https://doi.org/10.1016/j.meegid.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  15. Kingry, L.C., Rowe, L.A., Respicio-Kingry, L.B., et al., Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis, Diagn. Microbiol. Infect. Dis., 2016, vol. 84, no. 4, pp. 275–280. https://doi.org/10.1016/j.diagmicrobio.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Lindler, L.E., Typing methods for the plague pathogen, Yersinia pestis, J. AOAC Int., 2009, vol. 92, no. 4, pp. 1174–1783.

    CAS  PubMed  Google Scholar 

  17. Platonov, M.E., Evseeva, V.V., Dentovskaya, S.V., and Anisimov, A.P., Molecular typing of Yersinia pestis, Mol. Genet., Microbiol. Virol., 2013, vol. 28, no. 2, pp. 41–51. https://doi.org/10.3103/S0891416813020067

    Article  Google Scholar 

  18. Vogler, A.J., Keim, P., and Wagner, D.M., A review of methods for subtyping Yersinia pestis: from phenotypes to whole genome sequencing, Infect., Genet. Evol., 2016, vol. 37, pp. 21–36. https://doi.org/10.1016/j.meegid.2015.10.024

    Article  CAS  Google Scholar 

  19. Riehm, J.M., Vergnaud, G., Kiefer, D., et al., Yersinia pestis lineages in Mongolia, PLoS One, 2012, vol. 7, no. 2, p. e30624. https://doi.org/10.1371/journal.pone.0030624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vogler, A.J., Chan, F., Nottingham, R., et al., A decade of plague in Mahajanga, Madagascar: Insights into the global maritime spread of pandemic plague, mBio, 2013, vol. 4, no. 1, p. e00623-00612. https://doi.org/10.1128/mBio.00623-12

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vogler, A.J., Chan, F., Wagner, D.M., et al., Phylogeography and molecular epidemiology of Yersinia pestis in Madagascar, PLoS Neglected Trop. Dis., 2011, vol. 5, no. 9, p. e1319. https://doi.org/10.1371/journal.pntd.0001319

    Article  Google Scholar 

  22. Kislichkina, A.A., Solomentsev, V.I., Blagodatskikh, S.A., et al., Three genetically different lineages of Yersinia pestis subsp. microtus bv. caucasica (0.PE2) strains circulate among common voles in natural plague loci in the Caucasus, Mol. Genet., Microbiol. Virol., 2017, vol. 3, no. 4, pp. 191–195. https://doi.org/10.3103/S0891416817040024

    Article  Google Scholar 

  23. Riehm, J.M., Projahn, M., Vogler, A.J., et al., Diverse genotypes of Yersinia pestis caused plague in Madagascar in 2007, PLoS Neglected Trop. Dis., 2015, vol. 9, no. 6, p. e0003844. https://doi.org/10.1371/journal.pntd.0003844

    Article  CAS  Google Scholar 

  24. Keim, P., Van Ert, M.N., Pearson, T., et al., Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales, Infect. Genet. Evol., 2004, vol. 4, no. 3, pp. 205–213. https://doi.org/10.1016/j.meegid.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Rasmussen, S., Allentoft, M.E., and Nielsen, K., Early divergent strains of in Eurasia 5.000 years ago, Cell, 2015, vol. 163, no. 3, pp. 571–582. https://doi.org/10.1016/j.cell.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Achtman, M., Morelli, G., Zhu, P., et al., Microevolution and history of the plague bacillus, Yersinia pestis, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 51, pp. 17 837–17 842. https://doi.org/10.1073/pnas.0408026101

    Article  CAS  Google Scholar 

  27. Cui, Y., Yu, C., Yan, Y., et al., Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 2, pp. 577–582. https://doi.org/10.1073/pnas.1205750110

    Article  PubMed  Google Scholar 

  28. Suntsov, V.V., Origin of the plague microbe Yersinia pestis: structure of the process of speciation, Biol. Bull., 2012, vol. 39, no. 1, pp. 1–9. https://doi.org/10.1134/S1062359012010104

    Article  CAS  Google Scholar 

  29. Eroshenko, G.A. and Kutyrev, V.V., Biochemical and genetic peculiarities and the phylogenetic relationship of the non-main subspecies in the general scheme of the plague agent evolution, Adv. Exp. Med. Biol., 2012, vol. 954, pp. 45–51. https://doi.org/10.1007/978-1-4614-3561-7_6

    Article  CAS  PubMed  Google Scholar 

  30. Eroshenko, G.A., Nosov, N.Y., Krasnov, Y.M., et al., Yersinia pestis strains of ancient phylogenetic branch 0.ANT are widely spread in the high-mountain plague foci of Kyrgyzstan, PLoS One, 2017, vol. 12, no. 10, p. e0187230. https://doi.org/10.1371/journal.pone.0187230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kislichkina, A.A., Bogun, A.G., Kadnikova, L.A., et al., Nineteen whole-genome assemblies of Yersinia pestis subsp. microtus, including representatives of biovars caucasica, talassica, hissarica, altaica, xilingolensis, and ulegeica, Genome Announce., 2015, vol. 3, no. 6, p. e01342-15. https://doi.org/10.1128/genomeA.01342-15

    Article  Google Scholar 

  32. Kislichkina, A.A., Bogun, A.G., and Kadnikova, L.A., Eight whole-genome assemblies of Yersinia pestis subsp. microtus bv. caucasica isolated from the common vole (Microtus arvalis) plague focus in Dagestan, Russia, Genome Announce., 2017, vol. 5, no. 34, p. e00847-17. https://doi.org/10.1128/genomeA.00847-17

    Article  Google Scholar 

  33. Kislichkina, A.A., Bogun, A.G., Kadnikova, L.A., et al., Nine whole-genome assemblies of Yersinia pestis subsp. microtus bv. altaica strains isolated from the Altai mountain natural plague focus (No. 36) in Russia, Genome Announce., 2018, vol. 6, no. 3, p. e01440-17. https://doi.org/10.1128/genomeA.01440-17

    Article  Google Scholar 

  34. Platonov, M.E., Evseeva, V.V., Dentovskaya, S.V., and Anisimov, A.P., Molecular typing of Yersinia pestis, Mol. Genet., Microbiol. Virol., 2013, vol. 2, pp. 3–12.

    Google Scholar 

  35. Anisimov, A.P., Yersinia pestis factors ensuring circulation and persistence of the plague pathogen in ecosystems of natural foci. Communication 1, Mol. Genet., Microbiol. Virol., 2002, vol. 4, pp. 1–30.

    Google Scholar 

  36. Li, Y., Cui, Y., Hauck, Y., et al., Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: Insights into the worldwide expansion of Central Asia plague foci, PLoS One, 2009, vol. 4, no. 6, p. e6000. https://doi.org/10.1371/journal.pone.0006000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kiefer, D., Dalantai, G., Damdindorj, T., et al., Phenotypical characterization of Mongolian Yersinia pestis strains, Vector Borne Zoonotic Dis., 2012, vol. 12, no. 3, pp. 183–188. https://doi.org/10.1089/vbz.2011.0748

    Article  PubMed  Google Scholar 

  38. Platonov, M.E., Evseeva, V.V., Efremenko, D.V., et al., Intraspecies classification of rhamnose-positive Yersinia pestis strains from natural plague foci of Mongolia, Mol. Genet., Microbiol. Virol., 2015, vol. 30, no. 1, pp. 23–28. https://doi.org/10.3103/S0891416815010073

    Article  Google Scholar 

  39. Platonov, M.E., Evseeva, V.V., Svetoch, T.E., et al., Phylogeography of Yersinia pestis vole strains isolated from natural foci of the Caucasus and South Caucasus, Mol. Genet., Microbiol. Virol., 2012, vol. 27, no. 3, pp. 18–21. https://doi.org/10.3103/S089141681203007X

    Article  Google Scholar 

  40. Laukkanen-Ninios, R., Didelot, X., Jolley, K.A., et al., Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing, Environ. Microbiol., 2011, vol. 13, no. 12, pp. 3114–3127. https://doi.org/10.1111/j.1462-2920.2011.02588.x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bercovier, H., Mollaret, H.H., Alonso, J.M., et al., Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis, Curr. Microbiol., 1980, vol. 4, pp. 225–229. https://doi.org/10.1007/BF02605861

    Article  CAS  Google Scholar 

  42. Davis, K.M., All Yersinia are not created equal: Phenotypic adaptation to distinct niches within mammalian tissues, Front. Cell. Infect. Microbiol., 2018, vol. 8, p. 261. https://doi.org/10.3389/fcimb.2018.00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grácio, A.J.D.S. and Grácio, M.A.A., Plague: a millenary infectious disease reemerging in the XXI century, Biomed. Res. Int., 2017, vol. 2017, article ID 5696542. https://doi.org/10.1155/2017/5696542

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brubaker, R.R., Factors promoting acute and chronic diseases caused by yersiniae, Clin. Microbiol. Rev., 1991, vol. 4, no. 3, pp. 309–324.

    Article  CAS  Google Scholar 

  45. McNally, A., Thomson, N.R., Reuter, S., and Wren, B.W., ‘Add, stir and reduce’: Yersinia spp. as model bacteria for pathogen evolution, Nat. Rev. Microbiol., 2016, vol. 14, no. 3, pp. 177–190. https://doi.org/10.1038/nrmicro.2015.29

    Article  CAS  PubMed  Google Scholar 

  46. Wayne, L.G., Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published in 1983 and 1984, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 357–358.

    Article  Google Scholar 

  47. Savin, C., Martin, L., Bouchier, C., et al., The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii, Int. J. Med. Microbiol., 2014, vol. 304, nos. 3–4, pp. 452–463. https://doi.org/10.1016/j.ijmm.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  48. Oren, A. and Garrity, G.M., List of new names and new combinations previously effectively, but not validly, published, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 2184–2187.

  49. Neubauer, H. and Sprague, L.D., Strains of Yersinia wautersii should continue to be classified as the ‘Korean Group’ of the Yersinia pseudotuberculosis complex and not as a separate species, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, part 2, pp. 732–733. https://doi.org/10.1099/ijs.0.070383-0

    Article  PubMed  Google Scholar 

  50. Kislichkina, A.A., Kadnikova, L.A., Platonov, M.E., et al., Differentiation of Yersinia pseudotuberculosis, Yersinia pestis subsp. pestis and subsp. microti strains and other representatives of Yersinia pseudotuberculosis complex, Mol. Genet., Microbiol. Virol., 2017, vol. 32, no. 2, pp. 67–74. https://doi.org/10.3103/S0891416817020070

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 14-15-00599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Anisimov.

Ethics declarations

No experimentation involving human or animals was part of the present work.

Conflict of interest. The authors declare that they have no conflict of interest.

Additional information

Translated by E. Martynova

Abbreviations: bv., biovar; DDBJ/ENA/GenBank, DNA Data Bank of Japan/European Nucleotide Archive/GenBank; DFR, Different Region; IS, insertion sequence; MLVA, multi locus VNTR analysis; s.l., sensu lato, s.s., sensu stricto; SNP, single nucleotide polymorphism; subsp., subspecies; var., variant; b, base pairs.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislichkina, A.A., Platonov, M.E., Vagaiskaya, A.S. et al. Rational Taxonomy of Yersinia pestis. Mol. Genet. Microbiol. Virol. 34, 110–117 (2019). https://doi.org/10.3103/S0891416819020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416819020058

Keywords:

Navigation