Skip to main content
Log in

Effects of the Shape and Surface Treatment of Clay on the Process of Uniaxially Drawn Low-Density Polyethylene/Clay Composites Films

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Fabricating composite films by dispersing clay in a polymer can provide functionalities such as antibiotic action and chemical adsorption. In this study, the effects of the shape and surface treatment of clay on the gas barrier properties, mechanical properties, thermal properties, and processing characteristics of polymer/clay composite films were investigated. Halloysites (HNTs) and vermiculites (VMTs), which are popular clays of the nanotube and nanoplate types, respectively, that are often employed to achieve functionality as they facilitate the carrying of chemicals, were incorporated into low-density polyethylene (LDPE). The effects of chemical treatment of the clay surface on the dispersibility of the clays in the polymer composites and on their properties were examined. Furthermore, the effects of the shapes and surface treatment of the clays on the drawabilities of the composite films, as well as the mechanical properties of the composite films according to the draw ratio were investigated. In the manufactured LDPE/clay composite films, the HNTs showed better dispersibility than the VMTs. After surface treatment with hydrochloric acid, the dispersibility improved relative to that before chemical treatment. With increasing clay content, the initial moduli of the composite sheets improved, but the tensile strengths and strains decreased. When VMTs were used, the gas barrier property of the composite film improved as the clay content increased; however, when HNTs were used, the gas barrier property decreased with increasing clay content When the clay surface was chemically treated, the drawabilities of the LDPE composites improved compared to those prior to surface treatment, and the drawabilities of the HNT composites were greater than those of the VMT composite. The maximum draw ratio of the surface-treated HNT composite film was the highest at 4.0, and the tensile strength increased by up to ≈3 times compared to that of the undrawn film. As the draw ratio increased, the gas barrier property, crystallinity, and the degree of orientation also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pedrazzoli, A. Pegoretti, R. Thomann, J. Kristof, and J. Karger-Kocsis, Polym. Compos., 36, 869 (2015).

    CAS  Google Scholar 

  2. Y. Joo, Y. Jeon, S. U. Lee, J. H. Sim, J. Ryu, S. Lee, H. Lee, and D. Sohn, J. Phys. Chem. C, 116, 18230 (2012).

    CAS  Google Scholar 

  3. C. E. Tas, S. Hendessi, M. Baysal, S. Unal, F. C. Cebeci, Y. Z. Menceloglu, and H. Unal, Food Bioprocess Tech., 10, 789 (2017).

    CAS  Google Scholar 

  4. R. D. White, D. V. Bavykin, and F. C. Walsh, Nanotechnology, 23, 065705 (2012).

    PubMed  Google Scholar 

  5. W. O. Yah, A. Takahara, and Y. M. Lvov, J. Am. Chem. Soc., 134, 1853 (2012).

    PubMed  CAS  Google Scholar 

  6. S. Levis and P. Deasy, Int J. Pharm., 243, 125 (2002).

    PubMed  CAS  Google Scholar 

  7. D. Tao, Y. Higaki, W. Ma, H. Wu, T. Shinohara, T. Yano, and A. Takahara, Polymer, 60, 284 (2015).

    CAS  Google Scholar 

  8. E. Horvath, J. Kristof, R. Frost, A. Redey, V. Vágvölgyi, and T. Cseh, J. Therm. Anal. Chem., 71, 707 (2003).

    CAS  Google Scholar 

  9. B. Lecouvet, M. Sclavons, S. Bourbigot, J. Devaux, and C. Bailly, Polymer, 52, 4284 (2011).

    CAS  Google Scholar 

  10. A-B. Zhang, L. Pan, H.-Y. Zhang, S.-T. Liu, Y. Ye, M.-S. Xia, and X-G. Chen, Colloids Surf. A: Physicochem. Eng. Asp, 396, 182 (2012).

    CAS  Google Scholar 

  11. S. Deng, J. Zhang, and L. Ye, Compos. Sci. Technol., 69, 2497 (2009).

    CAS  Google Scholar 

  12. V. P. Singh, K. Vimal, G. Kapur, S. Sharma, and V. Choudhary, J. Polym. Res, 23, 43 (2016).

    Google Scholar 

  13. Y. T. Park, Y. Qian, C. I. Lindsay, C. Nijs, R. E. Camargo, A. Stein, and C. W. Macosko, ACS Appl. Mater. Interfaces, 5, 3054 (2013).

    PubMed  CAS  Google Scholar 

  14. S. Tjong and Y. Meng, J. Polym. Sci. B: Polym. Phys, 41, 1476 (2003).

    CAS  Google Scholar 

  15. Y. Qian, W. Liu, Y. T. Park, C. I. Lindsay, R. Camargo, C. W. Macosko, and A. Stein, Polymer, 53, 5060 (2012).

    CAS  Google Scholar 

  16. H. S. Lee and J. H. Chang, J. Korean Ceram. Soc., 55, 85 (2018).

    CAS  Google Scholar 

  17. L. Pérez-Maqueda, O. Caneo, J. Poyato, and J. Pérez-Rodríguez, Phys. Chem. Miner, 28, 61 (2001).

    Google Scholar 

  18. S. Tjong, Y. Meng, and A. Hay, Chem. Mater, 14, 44 (2002).

    CAS  Google Scholar 

  19. P. G. Slade and W. P. Gates, Appl Clay Sci., 25, 93 (2004).

    CAS  Google Scholar 

  20. K. Pramoda, T. Liu, Z. Liu, C. He, and H.-J. Sue, Polym. Degrad. Stab., 81, 47 (2003).

    CAS  Google Scholar 

  21. Y. Zheng, Y. Zheng, and R. Ning, Mater. Lett., 57, 2940 (2003).

    CAS  Google Scholar 

  22. K. Magniez, B. L. Fox, and M. G. Looney, Polym Eng. Sci., 52, 1402 (2012).

    CAS  Google Scholar 

  23. C. F. On, J. Polym. Sci. B: Polym. Phys., 41, 2902 (2003).

    Google Scholar 

  24. M. Du, B. Guo, M. Liu, and D. Jia, Polym. J., 38, 1198 (2006).

    CAS  Google Scholar 

  25. E. P. Giannelis, Appl. Organomet Chem., 12, 675 (1998).

    CAS  Google Scholar 

  26. K. Goren, L. Chen, L. S. Schadler, and R. Ozisik, J. Supercritical Fluids, 51, 420 (2010).

    CAS  Google Scholar 

  27. G. Wang, X. Y. Chen, R. Huang, and L. Zhang, J. Mater. Sci. Lett, 21, 985 (2002).

    CAS  Google Scholar 

  28. A. K. Panda, B. G. Mishra, D. K. Mishra, and R. K. Singh, Colloid Surf. A: Physicochem. Eng. Asp., 363, 98 (2010).

    CAS  Google Scholar 

  29. C. Belver, M. A. Bañares Muñoz, and M. A. Vicente, Chem. Mater, 14, 2033 (2002).

    CAS  Google Scholar 

  30. K. Belkassa, F. Bessaha, K. Marouf-Khelifa, I. Batonneau-Gener, J.-D. Comparot, and A. Khelifa, Colloid Surf. A: Physicochem. Eng.Asp., 421, 26 (2013).

    CAS  Google Scholar 

  31. J. Ravichandran and B. Sivasankar, Clays Clay Miner., 45, 854 (1997).

    CAS  Google Scholar 

  32. M. Topouzi, E. Kontonasaki, D. Bikiaris, L. Papadopoulou, K. M. Paraskevopoulos, and P. Koidis, J. Mech. Behav. Biomed. Mater, 69, 213 (2017).

    PubMed  CAS  Google Scholar 

  33. S.-Y. Fu, X-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. Part B: Eng., 39, 933 (2008).

    Google Scholar 

  34. U. A. Handge, K. Hedicke-Höchstötter, and V. Altstädt, Polymer, 51, 2690 (2010).

    CAS  Google Scholar 

  35. K. Hedicke-Höchst:otter, G. T. Lim, and V. Altstadt, Compos. Sci. Technol., 69, 330 (2009).

    Google Scholar 

  36. H. Ismail, P. Pasbakhsh, M. A. Fauzi, and A. A. Bakar, Polym. Test, 27, 841 (2008).

    CAS  Google Scholar 

  37. J. H. Chang, Y. U. An, and G. S. Sur, J. Polym. Sci. Part B: Polym. Phys, 41, 94 (2003).

    CAS  Google Scholar 

  38. D. Wu, L. Wu, L. Wu, and M. Zhang, Polym. Degrad. Stab., 91, 3149 (2006).

    CAS  Google Scholar 

  39. X. Yang, Y. Zhang, Y. Xu, S. Gao, and S. Guo, Macromol. Res, 25, 270 (2017).

    CAS  Google Scholar 

  40. Q. Zhang, D. Li, D. Lai, and B. Ou, Macromol. Res., 23, 802 (2015).

    CAS  Google Scholar 

  41. M. Du, B. Guo, and D. Jia, Eur. Polym. J., 42, 1362 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Cheol Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the Technology Innovation Program (No. 10063291) funded by Ministry of Trade, Industry & Energy (MOTIE, Korea).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youm, J.S., Ban, H.R., Chang, J.H. et al. Effects of the Shape and Surface Treatment of Clay on the Process of Uniaxially Drawn Low-Density Polyethylene/Clay Composites Films. Macromol. Res. 28, 356–364 (2020). https://doi.org/10.1007/s13233-020-8048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8048-6

Keywords

Navigation