Skip to main content

Advertisement

Log in

Construction of calcitonin gene-related peptide-modified mesenchymal stem cells and analysis of their effects on the migration and proliferation of vascular smooth muscle cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Lentiviral expression vectors for calcitonin gene-related peptide (CGRP) were used to transfect rat bone marrow mesenchymal stem cells (MSCs). After assessing the biological characteristics of proliferation and aging in MSCs transfected with CGRP, we observed the effects of the CGRP-modified rat MSCs on the migration and proliferation of rat vascular smooth muscle cells (VSMCs) in vitro. Rat MSCs were isolated, cultured in vitro, and identified by flow cytometry. A CGRP recombinant lentivirus was transfected into MSCs. The transfection efficiency was determined by fluorescence microscopy and flow cytometry, and CGRP in MSCs was detected by real-time quantitative PCR, ELISA, and immunofluorescence. The proliferation and senescence of CGRP-modified MSCs were evaluated by MTT assay and beta-galactosidase staining. VSMCs were isolated, cultured in vitro, and identified by immunofluorescence. CGRP-modified MSCs and VSMCs were cocultured in a Transwell system. The proliferation and migration of VSMCs were evaluated by scratch testing and the MTT method. Rat bone marrow MSCs showed a spindle-shaped morphology, adherent growth in vitro, positive CD29 and CD90 expression, and negative CD45 expression. CGRP was stably expressed in MSCs after 48 h of recombinant lentivirus transfection. CGRP mRNA and protein secretion in CGRP recombinant lentivirus-transfected MSCs were higher than that in control MSCs. Immunofluorescence showed that CGRP protein could be expressed in CGRP-modified MSCs. The proliferation ability and senescence rates did not differ between lentivirus-transfected MSCs and untransfected MSCs. Rat VSMCs expressed α-SMA protein and exhibited a spindle-shaped morphology and adherent growth in vitro. In Transwell coculture experiments, scratch testing of VSMCs showed that CGRP-modified MSCs could reduce VSMC proliferation and migration. The CGRP gene can be stably expressed in MSCs after CGRP recombinant lentivirus transfection. CGRP recombinant lentivirus transfection has little effect on the proliferation or senescence of MSCs, and CGRP-modified MSCs can inhibit the proliferation and migration of VSMCs. These results lay a foundation for research on the use of CGRP gene-engineered MSCs in restenosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This work was supported by the Science and Technology Fund of Guizhou Province (Qian ke he LH zi [2014] 7576) and the National Natural Science Foundation of China (81060014).

Author information

Authors and Affiliations

Authors

Contributions

P.C. and B.S. designed the study; P.C. and S.M. performed the experiments, analyzed the data, and obtained the results; P.C., T.L., and F.H. wrote the manuscript and made the illustrations.

Corresponding author

Correspondence to Bei Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., He, F., Liu, T. et al. Construction of calcitonin gene-related peptide-modified mesenchymal stem cells and analysis of their effects on the migration and proliferation of vascular smooth muscle cells. In Vitro Cell.Dev.Biol.-Animal 56, 181–191 (2020). https://doi.org/10.1007/s11626-019-00429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00429-1

Keywords

Navigation