Skip to main content
Log in

Patient-Specific Cells for Modeling and Decoding Amyotrophic Lateral Sclerosis: Advances and Challenges

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Motor neuron loss or degeneration is the typical characteristic of amyotrophic lateral sclerosis (ALS), which often leads to weakness, paralysis, or even death. The underlying mechanisms of motor neuron degeneration and ALS progression remain elusive, and there is no effective treatment for ALS. The advances of stem cells and reprogramming techniques has made it possible to generate patient-specific motor neurons as cell models for studying disease mechanisms and drug discovery. This review comprehensively discusses recent approaches to generate motor neurons from stem cells and somatic cells and highlights the application of induced motor neurons to modeling ALS diseases, dissecting the pathogenesis, and screening new drugs. New perspectives are also discussed on generating patient-specific motor neuron subtypes that are affected by ALS or creating 3D spinal cord organoid models for better recapitulating and understanding ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, K. L., Rousso, D. L., Umbach, J. A., & Novitch, B. G. (2015). Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nature Communications, 6, 6778. https://doi.org/10.1038/ncomms7778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alami, N. H., Smith, R. B., Carrasco, M. A., Williams, L. A., Winborn, C. S., Han, S. S. W., Kiskinis, E., Winborn, B., Freibaum, B. D., Kanagaraj, A., Clare, A. J., Badders, N. M., Bilican, B., Chaum, E., Chandran, S., Shaw, C. E., Eggan, K. C., Maniatis, T., & Taylor, J. P. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron, 81(3), 536–543. https://doi.org/10.1016/j.neuron.2013.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen, S. P., Hall, B., Castelli, L. M., Francis, L., Woof, R., Siskos, A. P., Kouloura, E., Gray, E., Thompson, A. G., Talbot, K., Higginbottom, A., Myszczynska, M., Allen, C. F., Stopford, M. J., Hemingway, J., Bauer, C. S., Webster, C. P., de Vos, K. J., Turner, M. R., Keun, H. C., Hautbergue, G. M., Ferraiuolo, L., & Shaw, P. J. (2019). Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain : a journal of neurology, 142(3), 586–605. https://doi.org/10.1093/brain/awy353.

    Article  Google Scholar 

  4. Almad, A. A., Doreswamy, A., Gross, S. K., Richard, J.-P., Huo, Y., Haughey, N., & Maragakis, N. J. (2016). Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia, 64(7), 1154–1169. https://doi.org/10.1002/glia.22989.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alves, C. J., Dariolli, R., Jorge, F. M., Monteiro, M. R., Maximino, J. R., Martins, R. S., Strauss, B. E., Krieger, J. E., Callegaro, D., & Chadi, G. (2015). Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Frontiers in Cellular Neuroscience, 9, 289. https://doi.org/10.3389/fncel.2015.00289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amoroso, M. W., Croft, G. F., Williams, D. J., O’Keeffe, S., Carrasco, M. A., Davis, A. R., et al. (2013). Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. The Journal of Neuroscience, 33(2), 574–586. https://doi.org/10.1523/JNEUROSCI.0906-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., et al. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 351(3), 602–611. https://doi.org/10.1016/j.bbrc.2006.10.093.

    Article  CAS  PubMed  Google Scholar 

  8. Bahrami, N., Bayat, M., Mohamadnia, A., Khakbiz, M., Yazdankhah, M., Ai, J., & Ebrahimi-Barough, S. (2016). Purmorphamine as a shh signaling activator small molecule promotes motor neuron differentiation of mesenchymal stem cells cultured on nanofibrous PCL scaffold. Molecular Neurobiology, 54(7), 5668–5675. https://doi.org/10.1007/s12035-016-0090-1.

    Article  CAS  PubMed  Google Scholar 

  9. Barmada, S. J., Serio, A., Arjun, A., Bilican, B., Daub, A., Ando, D. M., Tsvetkov, A., Pleiss, M., Li, X., Peisach, D., Shaw, C., Chandran, S., & Finkbeiner, S. (2014). Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nature Chemical Biology, 10(8), 677–685. https://doi.org/10.1038/nchembio.1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Shushan, E., Feldman, E., & Reubinoff, B. E. (2015). Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells, 33(2), 403–415. https://doi.org/10.1002/stem.1873.

    Article  CAS  PubMed  Google Scholar 

  11. Bhinge, A., Namboori, S. C., Zhang, X., VanDongen, A. M. J., & Stanton, L. W. (2017). Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Reports, 8(4), 856–869. https://doi.org/10.1016/j.stemcr.2017.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowser, D. A., & Moore, M. J. (2019). Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting. Biofabrication, 12(1), 15002. https://doi.org/10.1088/1758-5090/ab41b4.

    Article  Google Scholar 

  13. Brown, R. H., & Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. New England Journal of Medicine, 377(2), 162–172. https://doi.org/10.1056/NEJMra1603471.

    Article  CAS  PubMed  Google Scholar 

  14. Burkhardt, M. F., Martinez, F. J., Wright, S., Ramos, C., Volfson, D., Mason, M., Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., Martinez, R., Gai, H., Blake, R., Vaisberg, E., Grskovic, M., Johnson, C., Irion, S., Bright, J., Cooper, B., Nguyen, L., Griswold-Prenner, I., & Javaherian, A. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Molecular and Cellular Neurosciences, 56, 355–364. https://doi.org/10.1016/j.mcn.2013.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai, S., Fu, X., & Sheng, Z. (2007). Dedifferentiation: A new approach in stem cell research. BioScience, 57(8), 655–662. https://doi.org/10.1641/B570805.

    Article  Google Scholar 

  16. Cai, S., Han, L., Ao, Q., Chan, Y. S., & Shum, D. K. Y. (2017). Human induced pluripotent cell-derived sensory neurons for fate commitment of bone marrow-derived schwann cells: Implications for remyelination therapy. Stem Cells Translational Medicine, 6(2), 369–381. https://doi.org/10.5966/sctm.2015-0424.

    Article  CAS  PubMed  Google Scholar 

  17. Cai, S., Pan, Y., & Sun, X. Y. (2012). Dedifferentiation: A new approach for skin regeneration. Science (New York, N.Y.), 336(suppl), 58–59. https://doi.org/10.1126/science.336.6080.497-c.

  18. Cai, S., Shea, G. K., Tsui, A. Y. P., Chan, Y. S., & Shum, D. K. Y. (2011). Derivation of clinically applicable schwann cells from bone marrow stromal cells for neural repair and regeneration. CNS & Neurological Disorders Drug Targets, 10(4), 500–508. https://doi.org/10.2174/187152711795563930.

    Article  CAS  Google Scholar 

  19. Cai, S., Shum, D. K. Y., & Chan, Y.S. (2018). Human induced pluripotent stem cell-derived sensory neurons for fate commitment of bone marrow stromal cell-derived schwann cells. Methods in molecular biology (Clifton, N.J.), 1739, 149–160. https://doi.org/10.1007/978-1-4939-7649-2_10.

    Google Scholar 

  20. Cai, S., Tsui, Y. P., Tam, K. W., Shea, G. K. H., Chang, R. S. K., Ao, Q., et al. (2017). Directed differentiation of human bone marrow stromal cells to fate-committed schwann cells. Stem Cell Reports, 9(4), 1097–1108. https://doi.org/10.1016/j.stemcr.2017.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Capauto, D., Colantoni, A., Lu, L., Santini, T., Peruzzi, G., Biscarini, S., Morlando, M., Shneider, N. A., Caffarelli, E., Laneve, P., & Bozzoni, I. (2018). A regulatory circuitry between Gria2, miR-409, and miR-495 is affected by ALS FUS mutation in ESC-derived motor neurons. Molecular Neurobiology, 55(10), 7635–7651. https://doi.org/10.1007/s12035-018-0884-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. https://doi.org/10.1038/nbt.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, H., Qian, K., Du, Z., Cao, J., Petersen, A., Liu, H., et al. (2014). Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell, 14(6), 796–809. https://doi.org/10.1016/j.stem.2014.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho, M. (2013). Oligodendrocyte failure in ALS. Nature Neuroscience, 16(5), 525. https://doi.org/10.1038/nn1305-525.

    Article  CAS  PubMed  Google Scholar 

  25. Dafinca, R., Scaber, J., Ababneh, N.’a., Lalic, T., Weir, G., Christian, H., et al. (2016). C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem cells (Dayton, Ohio), 34(8), 2063–2078. https://doi.org/10.1002/stem.2388.

    Article  CAS  Google Scholar 

  26. Davis-Dusenbery, B. N., Williams, L. A., Klim, J. R., & Eggan, K. (2014). How to make spinal motor neurons. Development (Cambridge, England), 141(3), 491–501. https://doi.org/10.1242/dev.097410.

    Article  CAS  Google Scholar 

  27. Devlin, A.-C., Burr, K., Borooah, S., Foster, J. D., Cleary, E. M., Geti, I., Vallier, L., Shaw, C. E., Chandran, S., & Miles, G. B. (2015). Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nature Communications, 6, 5999. https://doi.org/10.1038/ncomms6999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S., & Eggan, K. C. (2008). Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell, 3(6), 637–648. https://doi.org/10.1016/j.stem.2008.09.017.

    Article  CAS  PubMed  Google Scholar 

  29. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T., & Eggan, K. (2007). Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nature Neuroscience, 10(5), 608–614. https://doi.org/10.1038/nn1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science (New York, N.Y.), 321(5893), 1218–1221. https://doi.org/10.1126/science.1158799.

    Article  CAS  Google Scholar 

  31. Donnelly, C. J., Zhang, P. W., Pham, J. T., Haeusler, A. R., Heusler, A. R., Mistry, N. A., et al. (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron, 80(2), 415–428. https://doi.org/10.1016/j.neuron.2013.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duval, N., Vaslin, C., Barata, T. C., Frarma, Y., Contremoulins, V., Baudin, X., et al. (2019). BMP4 patterns Smad activity and generates stereotyped cell fate organization in spinal organoids. Development (Cambridge, England), 146(14). https://doi.org/10.1242/dev.175430.

    Article  CAS  Google Scholar 

  33. Egawa, N., Kitaoka, S., Tsukita, K., Naitoh, M., Takahashi, K., Yamamoto, T., et al. (2012). Drug screening for ALS using patient-specific induced pluripotent stem cells. Science translational medicine, 4(145), 145ra104. https://doi.org/10.1126/scitranslmed.3004052.

    Article  Google Scholar 

  34. Fang, M. Y., Markmiller, S., Vu, A. Q., Javaherian, A., Dowdle, W. E., Jolivet, P., Bushway, P. J., Castello, N. A., Baral, A., Chan, M. Y., Linsley, J. W., Linsley, D., Mercola, M., Finkbeiner, S., Lecuyer, E., Lewcock, J. W., & Yeo, G. W. (2019). Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron, 103(5), 802–819. https://doi.org/10.1016/j.neuron.2019.05.048.

    Article  CAS  PubMed  Google Scholar 

  35. Frakes, A. E., Ferraiuolo, L., Haidet-Phillips, A. M., Schmelzer, L., Braun, L., Miranda, C. J., Ladner, K. J., Bevan, A. K., Foust, K. D., Godbout, J. P., Popovich, P. G., Guttridge, D. C., & Kaspar, B. K. (2014). Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron, 81(5), 1009–1023. https://doi.org/10.1016/j.neuron.2014.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frick, P., Sellier, C., Mackenzie, I. R. A., Cheng, C. Y., Tahraoui-Bories, J., Martinat, C., Pasterkamp, R. J., Prudlo, J., Edbauer, D., Oulad-Abdelghani, M., Feederle, R., Charlet-Berguerand, N., & Neumann, M. (2018). Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications, 6(1), 72. https://doi.org/10.1186/s40478-018-0579-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujimori, K., Ishikawa, M., Otomo, A., Atsuta, N., Nakamura, R., Akiyama, T., Hadano, S., Aoki, M., Saya, H., Sobue, G., & Okano, H. (2018). Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nature Medicine, 24(10), 1579–1589. https://doi.org/10.1038/s41591-018-0140-5.

    Article  CAS  PubMed  Google Scholar 

  38. Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z.’e., Guo, L., et al. (2019). Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 102(2), 339–357.e7. https://doi.org/10.1016/j.neuron.2019.02.038.

    Article  Google Scholar 

  39. Gijselinck, I., van Langenhove, T., van der Zee, J., Sleegers, K., Philtjens, S., Kleinberger, G., Janssens, J., Bettens, K., van Cauwenberghe, C., Pereson, S., Engelborghs, S., Sieben, A., de Jonghe, P., Vandenberghe, R., Santens, P., de Bleecker, J., Maes, G., Bäumer, V., Dillen, L., Joris, G., Cuijt, I., Corsmit, E., Elinck, E., van Dongen, J., Vermeulen, S., van den Broeck, M., Vaerenberg, C., Mattheijssens, M., Peeters, K., Robberecht, W., Cras, P., Martin, J. J., de Deyn, P. P., Cruts, M., & van Broeckhoven, C. (2012). A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study. The Lancet Neurology, 11(1), 54–65. https://doi.org/10.1016/S1474-4422(11)70261-7.

    Article  CAS  PubMed  Google Scholar 

  40. Guo, W., Naujock, M., Fumagalli, L., Vandoorne, T., Baatsen, P., Boon, R., Ordovás, L., Patel, A., Welters, M., Vanwelden, T., Geens, N., Tricot, T., Benoy, V., Steyaert, J., Lefebvre-Omar, C., Boesmans, W., Jarpe, M., Sterneckert, J., Wegner, F., Petri, S., Bohl, D., vanden Berghe, P., Robberecht, W., van Damme, P., Verfaillie, C., & van den Bosch, L. (2017). HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nature Communications, 8(1), 861. https://doi.org/10.1038/s41467-017-00911-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (New York, N.Y.), 264(5166), 1772–1775. https://doi.org/10.1126/science.8209258.

    Article  CAS  Google Scholar 

  42. Hall, C. E., Yao, Z., Choi, M., Tyzack, G. E., Serio, A., Luisier, R., Harley, J., Preza, E., Arber, C., Crisp, S. J., Watson, P. M. D., Kullmann, D. M., Abramov, A. Y., Wray, S., Burley, R., Loh, S. H. Y., Martins, L. M., Stevens, M. M., Luscombe, N. M., Sibley, C. R., Lakatos, A., Ule, J., Gandhi, S., & Patani, R. (2017). Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Reports, 19(9), 1739–1749. https://doi.org/10.1016/j.celrep.2017.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Halpern, M., Brennand, K. J., & Gregory, J. (2019). Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiology of Disease, 132, 104562. https://doi.org/10.1016/j.nbd.2019.104562.

    Article  PubMed  Google Scholar 

  44. Han, S. M., El Oussini, H., Scekic-Zahirovic, J., Vibbert, J., Cottee, P., Prasain, J. K., et al. (2013). VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans. PLoS Genetics, 9(9), e1003738. https://doi.org/10.1371/journal.pgen.1003738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., et al. (2017). Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis. Nature reviews. disease primers, 3, 17071. https://doi.org/10.1038/nrdp.2017.71.

    Article  PubMed  Google Scholar 

  46. Hester, M. E., Murtha, M. J., Song, S., Rao, M., Miranda, C. J., Meyer, K., Tian, J., Boulting, G., Schaffer, D. V., Zhu, M. X., Pfaff, S. L., Gage, F. H., & Kaspar, B. K. (2011). Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Molecular therapy : the journal of the american society of gene therapy, 19(10), 1905–1912. https://doi.org/10.1038/mt.2011.135.

    Article  CAS  Google Scholar 

  47. Higelin, J., Demestre, M., Putz, S., Delling, J. P., Jacob, C., Lutz, A. K., Bausinger, J., Huber, A. K., Klingenstein, M., Barbi, G., Speit, G., Huebers, A., Weishaupt, J. H., Hermann, A., Liebau, S., Ludolph, A. C., & Boeckers, T. M. (2016). FUS mislocalization and vulnerability to DNA damage in ALS patients derived hiPSCs and aging motoneurons. Frontiers in Cellular Neuroscience, 10, 290. https://doi.org/10.3389/fncel.2016.00290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Höing, S., Rudhard, Y., Reinhardt, P., Glatza, M., Stehling, M., Wu, G., Peiker, C., Böcker, A., Parga, J. A., Bunk, E., Schwamborn, J. C., Slack, M., Sterneckert, J., & Schöler, H. R. (2012). Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell, 11(5), 620–632. https://doi.org/10.1016/j.stem.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  49. Hu, B. Y., & Zhang, S. C. (2009). Differentiation of spinal motor neurons from pluripotent human stem cells. Nature Protocols, 4(9), 1295–1304. https://doi.org/10.1038/nprot.2009.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ichida, J. K., Staats, K. A., Davis-Dusenbery, B. N., Clement, K., Galloway, K. E., Babos, K. N., et al. (2018). Comparative genomic analysis of embryonic, lineage-converted and stem cell-derived motor neurons. Development (Cambridge, England), 145(22). https://doi.org/10.1242/dev.168617.

    Article  Google Scholar 

  51. Karumbayaram, S., Novitch, B. G., Patterson, M., Umbach, J. A., Richter, L., Lindgren, A., Conway, A. E., Clark, A. T., Goldman, S. A., Plath, K., Wiedau-Pazos, M., Kornblum, H. I., & Lowry, W. E. (2009). Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 27(4), 806–811. https://doi.org/10.1002/stem.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaus, A., & Sareen, D. (2015). ALS patient stem cells for unveiling disease signatures of motoneuron susceptibility: Perspectives on the deadly mitochondria, ER stress and calcium triad. Frontiers in Cellular Neuroscience, 9, 448. https://doi.org/10.3389/fncel.2015.00448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kiskinis, E., Kralj, J. M., Zou, P., Weinstein, E. N., Zhang, H., Tsioras, K., et al. (2018). All-optical electrophysiology for high-throughput functional characterization of a human iPSC-derived motor neuron model of ALS. Stem Cell Reports, 10(6), 1991–2004. https://doi.org/10.1016/j.stemcr.2018.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kiskinis, E., Sandoe, J., Williams, L. A., Boulting, G. L., Moccia, R., Wainger, B. J., Han, S., Peng, T., Thams, S., Mikkilineni, S., Mellin, C., Merkle, F. T., Davis-Dusenbery, B. N., Ziller, M., Oakley, D., Ichida, J., di Costanzo, S., Atwater, N., Maeder, M. L., Goodwin, M. J., Nemesh, J., Handsaker, R. E., Paull, D., Noggle, S., McCarroll, S., Joung, J. K., Woolf, C. J., Brown, R. H., & Eggan, K. (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 14(6), 781–795. https://doi.org/10.1016/j.stem.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuijpers, M., Yu, K. L., Teuling, E., Akhmanova, A., Jaarsma, D., & Hoogenraad, C. C. (2013). The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. The EMBO Journal, 32(14), 2056–2072. https://doi.org/10.1038/emboj.2013.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lacomis, D., & Gooch, C. (2019). Upper motor neuron assessment and early diagnosis in ALS: Getting it right the first time. Neurology, 92(6), 255–256. https://doi.org/10.1212/WNL.0000000000006867.

    Article  PubMed  Google Scholar 

  57. Lai, B. Q., Feng, B., Che, M. T., Wang, L. J., Cai, S., Huang, M. Y., et al. (2018). A modular assembly of spinal cord-like tissue allows targeted tissue repair in the transected spinal cord. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 5(9), 1800261. https://doi.org/10.1002/advs.201800261.

    Article  Google Scholar 

  58. Lall, D., & Baloh, R. H. (2017). Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. The Journal of Clinical Investigation, 127(9), 3250–3258. https://doi.org/10.1172/JCI90607.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lenzi, J., de Santis, R., de Turris, V., Morlando, M., Laneve, P., Calvo, A., Caliendo, V., Chiò, A., Rosa, A., & Bozzoni, I. (2015). ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Disease Models & Mechanisms, 8(7), 755–766. https://doi.org/10.1242/dmm.020099.

    Article  CAS  Google Scholar 

  60. Li, X. J., Hu, B. Y., Jones, S. A., Zhang, Y. S., Lavaute, T., Du, Z. W., et al. (2008). Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells, 26(4), 886–893. https://doi.org/10.1634/stemcells.2007-0620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, X. J., Du, Z. W., Zarnowska, E. D., Pankratz, M., Hansen, L. O., Pearce, R. A., et al. (2005). Specification of motoneurons from human embryonic stem cells. Nature Biotechnology, 23(2), 215–221. https://doi.org/10.1038/nbt1063.

    Article  CAS  PubMed  Google Scholar 

  62. Liu, J., Allender, E., Wang, J., Simpson, E. H., Loeb, J. A., & Song, F. (2018). Slowing disease progression in the SOD1 mouse model of ALS by blocking neuregulin-induced microglial activation. Neurobiology of Disease, 111, 118–126. https://doi.org/10.1016/j.nbd.2017.12.012.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, M. L., Zang, T., & Zhang, C. L. (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Reports, 14(1), 115–128. https://doi.org/10.1016/j.celrep.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, M. L., Zang, T., Zou, Y., Chang, J. C., Gibson, J. R., Huber, K. M., & Zhang, C. L. (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 4, 2183. https://doi.org/10.1038/ncomms3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, X., Chen, J., Liu, W., Li, X., Chen, Q., Liu, T., Gao, S., & Deng, M. (2015). The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics, 16(3), 223–231. https://doi.org/10.1007/s10048-015-0448-y.

    Article  CAS  PubMed  Google Scholar 

  66. Lopez-Gonzalez, R., Lu, Y., Gendron, T. F., Karydas, A., Tran, H., Yang, D., Petrucelli, L., Miller, B. L., Almeida, S., & Gao, F. B. (2016). Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron, 92(2), 383–391. https://doi.org/10.1016/j.neuron.2016.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luisier, R., Tyzack, G. E., Hall, C. E., Mitchell, J. S., Devine, H., Taha, D. M., Malik, B., Meyer, I., Greensmith, L., Newcombe, J., Ule, J., Luscombe, N. M., & Patani, R. (2018). Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nature Communications, 9(1), 2010. https://doi.org/10.1038/s41467-018-04373-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Madill, M., McDonagh, K., Ma, J., Vajda, A., McLoughlin, P., O’Brien, T., et al. (2017). Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Molecular Brain, 10(1), 22. https://doi.org/10.1186/s13041-017-0300-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mao, D., Lin, G., Tepe, B., Zuo, Z., Tan, K. L., Senturk, M., Zhang, S., Arenkiel, B. R., Sardiello, M., & Bellen, H. J. (2019). VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy, 15(7), 1214–1233. https://doi.org/10.1080/15548627.2019.1580103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marchetto, M. C. N., Muotri, A. R., Mu, Y., Smith, A. M., Cezar, G. G., & Gage, F. H. (2008). Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell, 3(6), 649–657. https://doi.org/10.1016/j.stem.2008.10.001.

    Article  CAS  PubMed  Google Scholar 

  71. Marrone, L., Poser, I., Casci, I., Japtok, J., Reinhardt, P., Janosch, A., Andree, C., Lee, H. O., Moebius, C., Koerner, E., Reinhardt, L., Cicardi, M. E., Hackmann, K., Klink, B., Poletti, A., Alberti, S., Bickle, M., Hermann, A., Pandey, U. B., Hyman, A. A., & Sterneckert, J. L. (2018). Isogenic FUS-eGFP iPSC reporter lines enable quantification of FUS stress granule pathology that is rescued by drugs inducing autophagy. Stem Cell Reports, 10(2), 375–389. https://doi.org/10.1016/j.stemcr.2017.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Melamed, Z.’e., López-Erauskin, J., Baughn, M. W., Zhang, O., Drenner, K., Sun, Y., et al. (2019). Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nature Neuroscience, 22(2), 180–190. https://doi.org/10.1038/s41593-018-0293-z.

    Article  CAS  Google Scholar 

  73. Mertens, J., Reid, D., Lau, S., Kim, Y., & Gage, F. H. (2018). Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annual Review of Genetics, 52, 271–293. https://doi.org/10.1146/annurev-genet-120417-031534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meyer, K., Ferraiuolo, L., Miranda, C. J., Likhite, S., McElroy, S., Renusch, S., Ditsworth, D., Lagier-Tourenne, C., Smith, R. A., Ravits, J., Burghes, A. H., Shaw, P. J., Cleveland, D. W., Kolb, S. J., & Kaspar, B. K. (2014). Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 829–832. https://doi.org/10.1073/pnas.1314085111.

    Article  CAS  PubMed  Google Scholar 

  75. Miller, R. G., Mitchell, J. D., & Moore, D. H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews, 3, CD001447. https://doi.org/10.1002/14651858.CD001447.pub3.

    Article  Google Scholar 

  76. Mitne-Neto, M., Machado-Costa, M., Marchetto, M. C. N., Bengtson, M. H., Joazeiro, C. A., Tsuda, H., et al. (2011). Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Human Molecular Genetics, 20(18), 3642–3652. https://doi.org/10.1093/hmg/ddr284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moens, T. G., Niccoli, T., Wilson, K. M., Atilano, M. L., Birsa, N., Gittings, L. M., Holbling, B. V., Dyson, M. C., Thoeng, A., Neeves, J., Glaria, I., Yu, L., Bussmann, J., Storkebaum, E., Pardo, M., Choudhary, J. S., Fratta, P., Partridge, L., & Isaacs, A. M. (2019). C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathologica, 137(3), 487–500. https://doi.org/10.1007/s00401-018-1946-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moore, S., Alsop, E., Lorenzini, I., Starr, A., Rabichow, B. E., Mendez, E., Levy, J. L., Burciu, C., Reiman, R., Chew, J., Belzil, V. V., W Dickson, D., Robertson, J., Staats, K. A., Ichida, J. K., Petrucelli, L., van Keuren-Jensen, K., & Sattler, R. (2019). ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathologica, 138(1), 49–65. https://doi.org/10.1007/s00401-019-01999-w.

    Article  CAS  PubMed  Google Scholar 

  79. Musarò, A. (2013). Understanding ALS: New therapeutic approaches. The FEBS Journal, 280(17), 4315–4322. https://doi.org/10.1111/febs.12087.

    Article  CAS  PubMed  Google Scholar 

  80. Naujock, M., Stanslowsky, N., Bufler, S., Naumann, M., Reinhardt, P., Sterneckert, J., et al. (2016). 4-Aminopyridine induced activity rescues hypoexcitable motor neurons from amyotrophic lateral sclerosis patient-derived induced pluripotent stem cells. Stem cells (Dayton, Ohio), 34(6), 1563–1575. https://doi.org/10.1002/stem.2354.

    Article  CAS  Google Scholar 

  81. Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., Naujock, M., Günther, R., Jin, M., Stanslowsky, N., Reinhardt, P., Sterneckert, J., Frickenhaus, M., Pan-Montojo, F., Storkebaum, E., Poser, I., Freischmidt, A., Weishaupt, J. H., Holzmann, K., Troost, D., Ludolph, A. C., Boeckers, T. M., Liebau, S., Petri, S., Cordes, N., Hyman, A. A., Wegner, F., Grill, S. W., Weis, J., Storch, A., & Hermann, A. (2018). Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nature Communications, 9(1), 335. https://doi.org/10.1038/s41467-017-02299-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neirinckx, V., Cantinieaux, D., Coste, C., Rogister, B., Franzen, R., & Wislet-Gendebien, S. (2014). Concise review: Spinal cord injuries: How could adult mesenchymal and neural crest stem cells take up the challenge? Stem cells (Dayton, Ohio), 32(4), 829–843. https://doi.org/10.1002/stem.1579.

    Article  CAS  Google Scholar 

  83. Pan, Y., & Cai, S. (2012). Current state of the development of mesenchymal stem cells into clinically applicable Schwann cell transplants. Molecular and Cellular Biochemistry, 368(1–2), 127–135. https://doi.org/10.1007/s11010-012-1351-6.

    Article  CAS  PubMed  Google Scholar 

  84. Pan, Y., Cai, S., Fu, X., & Zhao, A. (2014). p53: The barrier or Guardian for cell dedifferentiation? BioScience, 64(10), 883–892. https://doi.org/10.1093/biosci/biu133.

    Article  Google Scholar 

  85. Qian, K., Huang, H., Peterson, A., Hu, B., Maragakis, N. J., Ming, G. L., Chen, H., & Zhang, S. C. (2017). Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Reports, 8(4), 843–855. https://doi.org/10.1016/j.stemcr.2017.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qin, H., Zhao, A., & Fu, X. (2017). Small molecules for reprogramming and transdifferentiation. Cellular and molecular life sciences : CMLS, 74(19), 3553–3575. https://doi.org/10.1007/s00018-017-2586-x.

    Article  CAS  PubMed  Google Scholar 

  87. Qin, H., Zhao, A., Ma, K., & Fu, X. (2018). Chemical conversion of human and mouse fibroblasts into motor neurons. Science China. Life Sciences, 61(10), 1151–1167. https://doi.org/10.1007/s11427-018-9359-8.

    Article  CAS  PubMed  Google Scholar 

  88. Qin, H., Zhao, A., Zhang, C., & Fu, X. (2016). Epigenetic control of reprogramming and transdifferentiation by histone modifications. Stem Cell Reviews, 12(6), 708–720. https://doi.org/10.1007/s12015-016-9682-4.

    Article  CAS  Google Scholar 

  89. Qiu, L., Qiao, T., Beers, M., Tan, W., Wang, H., Yang, B., & Xu, Z. (2013). Widespread aggregation of mutant VAPB associated with ALS does not cause motor neuron degeneration or modulate mutant SOD1 aggregation and toxicity in mice. Molecular Neurodegeneration, 8, 1. https://doi.org/10.1186/1750-1326-8-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qu, Q., Li, D., Louis, K. R., Li, X., Yang, H., Sun, Q., Crandall, S. R., Tsang, S., Zhou, J., Cox, C. L., Cheng, J., & Wang, F. (2014). High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nature Communications, 5, 3449. https://doi.org/10.1038/ncomms4449.

    Article  CAS  PubMed  Google Scholar 

  91. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H., & Gordon, J. W. (1995). Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 92(3), 689–693. https://doi.org/10.1073/pnas.92.3.689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robberecht, W., & Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nature Reviews. Neuroscience, 14(4), 248–264. https://doi.org/10.1038/nrn3430.

    Article  CAS  PubMed  Google Scholar 

  93. de Santis, R., Santini, L., Colantoni, A., Peruzzi, G., de Turris, V., Alfano, V., Bozzoni, I., & Rosa, A. (2017). FUS mutant human motoneurons display altered transcriptome and microRNA pathways with implications for ALS pathogenesis. Stem Cell Reports, 9(5), 1450–1462. https://doi.org/10.1016/j.stemcr.2017.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sareen, D., O’Rourke, J. G., Meera, P., Muhammad, A. K. M. G., Grant, S., Simpkinson, M., et al. (2013). Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Science translational medicine, 5(208), 208ra149. https://doi.org/10.1126/scitranslmed.3007529.

    Article  Google Scholar 

  95. Scott, A. (2017). Drug therapy: On the treatment trail for ALS. Nature, 550(7676), S120–S121. https://doi.org/10.1038/550S120a.

    Article  CAS  PubMed  Google Scholar 

  96. Selvaraj, B. T., Livesey, M. R., Zhao, C., Gregory, J. M., James, O. T., Cleary, E. M., Chouhan, A. K., Gane, A. B., Perkins, E. M., Dando, O., Lillico, S. G., Lee, Y. B., Nishimura, A. L., Poreci, U., Thankamony, S., Pray, M., Vasistha, N. A., Magnani, D., Borooah, S., Burr, K., Story, D., McCampbell, A., Shaw, C. E., Kind, P. C., Aitman, T. J., Whitelaw, C. B. A., Wilmut, I., Smith, C., Miles, G. B., Hardingham, G. E., Wyllie, D. J. A., & Chandran, S. (2018). C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+−permeable AMPA receptor-mediated excitotoxicity. Nature Communications, 9(1), 347. https://doi.org/10.1038/s41467-017-02729-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Serio, A., Bilican, B., Barmada, S. J., Ando, D. M., Zhao, C., Siller, R., Burr, K., Haghi, G., Story, D., Nishimura, A. L., Carrasco, M. A., Phatnani, H. P., Shum, C., Wilmut, I., Maniatis, T., Shaw, C. E., Finkbeiner, S., & Chandran, S. (2013). Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4697–4702. https://doi.org/10.1073/pnas.1300398110.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shimojo, D., Onodera, K., Doi-Torii, Y., Ishihara, Y., Hattori, C., Miwa, Y., Tanaka, S., Okada, R., Ohyama, M., Shoji, M., Nakanishi, A., Doyu, M., Okano, H., & Okada, Y. (2015). Rapid, efficient, and simple motor neuron differentiation from human pluripotent stem cells. Molecular Brain, 8(1), 79. https://doi.org/10.1186/s13041-015-0172-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shirian, S., Ebrahimi-Barough, S., Saberi, H., Norouzi-Javidan, A., Mousavi, S. M., Derakhshan, M. A., Arjmand, B., & Ai, J. (2016). Comparison of capability of human bone marrow Mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(epsilon-caprolactone) scaffold. Molecular Neurobiology, 53(8), 5278–5287. https://doi.org/10.1007/s12035-015-9442-5.

    Article  CAS  PubMed  Google Scholar 

  100. Singh Roy, N., Nakano, T., Xuing, L., Kang, J., Nedergaard, M., & Goldman, S. A. (2005). Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Experimental Neurology, 196(2), 224–234. https://doi.org/10.1016/j.expneurol.2005.06.021.

    Article  CAS  PubMed  Google Scholar 

  101. Sivadasan, R., Hornburg, D., Drepper, C., Frank, N., Jablonka, S., Hansel, A., Lojewski, X., Sterneckert, J., Hermann, A., Shaw, P. J., Ince, P. G., Mann, M., Meissner, F., & Sendtner, M. (2016). C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nature Neuroscience, 19(12), 1610–1618. https://doi.org/10.1038/nn.4407.

    Article  CAS  PubMed  Google Scholar 

  102. Son, E. Y., Ichida, J. K., Wainger, B. J., Toma, J. S., Rafuse, V. F., Woolf, C. J., & Eggan, K. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 9(3), 205–218. https://doi.org/10.1016/j.stem.2011.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spiller, K. J., Restrepo, C. R., Khan, T., Dominique, M. A., Fang, T. C., Canter, R. G., Roberts, C. J., Miller, K. R., Ransohoff, R. M., Trojanowski, J. Q., & Lee, V. M. (2018). Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nature Neuroscience, 21(3), 329–340. https://doi.org/10.1038/s41593-018-0083-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tang, Y., Liu, M.-L., Zang, T., & Zhang, C.-L. (2017). Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Frontiers in Molecular Neuroscience, 10, 359. https://doi.org/10.3389/fnmol.2017.00359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taylor, J. P., Brown, R. H., & Cleveland, D. W. (2016). Decoding ALS: From genes to mechanism. Nature, 539(7628), 197–206. https://doi.org/10.1038/nature20413.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thonhoff, J. R., Ojeda, L., & Wu, P. (2009). Stem cell-derived motor neurons: Applications and challenges in amyotrophic lateral sclerosis. Current Stem Cell Research & Therapy, 4(3), 178–199. https://doi.org/10.2174/157488809789057392.

    Article  CAS  Google Scholar 

  107. Tudor, E. L., Galtrey, C. M., Perkinton, M. S., Lau, K. F., de Vos, K. J., Mitchell, J. C., et al. (2010). Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience, 167(3), 774–785. https://doi.org/10.1016/j.neuroscience.2010.02.035.

    Article  CAS  PubMed  Google Scholar 

  108. Wainger, B. J., Kiskinis, E., Mellin, C., Wiskow, O., Han, S. S. W., Sandoe, J., et al. (2014). Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports, 7(1), 1–11. https://doi.org/10.1016/j.celrep.2014.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, L., Yi, F., Fu, L., Yang, J., Wang, S., Wang, Z., Suzuki, K., Sun, L., Xu, X., Yu, Y., Qiao, J., Belmonte, J. C. I., Yang, Z., Yuan, Y., Qu, J., & Liu, G. H. (2017). CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein & Cell, 8(5), 365–378. https://doi.org/10.1007/s13238-017-0397-3.

    Article  CAS  Google Scholar 

  110. Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S. S., Shi, Y., Lin, S., Shneider, N. A., Monaghan, J., Pandey, U. B., Pasinelli, P., Ichida, J. K., & Trotti, D. (2014). Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron, 84(6), 1213–1225. https://doi.org/10.1016/j.neuron.2014.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Westergard, T., Jensen, B. K., Wen, X., Cai, J., Kropf, E., Iacovitti, L., Pasinelli, P., & Trotti, D. (2016). Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Reports, 17(3), 645–652. https://doi.org/10.1016/j.celrep.2016.09.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wichterle, H., Lieberam, I., Porter, J. A., & Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110(3), 385–397. https://doi.org/10.1016/s0092-8674(02)00835-8.

    Article  CAS  PubMed  Google Scholar 

  113. Wichterle, H., & Peljto, M. (2008). Differentiation of mouse embryonic stem cells to spinal motor neurons. Current protocols in stem cell biology, chapter 1. Unit, 1H(1), 1–1H.1.9. https://doi.org/10.1002/9780470151808.sc01h01s5.

    Article  Google Scholar 

  114. Xiao, Q., Zhao, W., Beers, D. R., Yen, A. A., Xie, W., Henkel, J. S., & Appel, S. H. (2007). Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. Journal of Neurochemistry, 102(6), 2008–2019. https://doi.org/10.1111/j.1471-4159.2007.04677.x.

    Article  CAS  PubMed  Google Scholar 

  115. Xu, J., Du, Y., & Deng, H. (2015). Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell, 16(2), 119–134. https://doi.org/10.1016/j.stem.2015.01.013.

    Article  CAS  PubMed  Google Scholar 

  116. Yin, S., Lopez-Gonzalez, R., Kunz, R. C., Gangopadhyay, J., Borufka, C., Gygi, S. P., Gao, F. B., & Reed, R. (2017). Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Reports, 19(11), 2244–2256. https://doi.org/10.1016/j.celrep.2017.05.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, Z., Almeida, S., Lu, Y., Nishimura, A. L., Peng, L., Sun, D., Wu, B., Karydas, A. M., Tartaglia, M. C., Fong, J. C., Miller, B. L., Farese RV Jr, Moore, M. J., Shaw, C. E., & Gao, F. B. (2013). Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One, 8(10), e76055. https://doi.org/10.1371/journal.pone.0076055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao, A., Qin, H., & Fu, X. (2016). What determines the regenerative capacity in animals? BioScience, 66(9), 735–746. https://doi.org/10.1093/biosci/biw079.

    Article  Google Scholar 

  119. Zhong, Z., Ilieva, H., Hallagan, L., Bell, R., Singh, I., Paquette, N., Thiyagarajan, M., Deane, R., Fernandez, J. A., Lane, S., Zlokovic, A. B., Liu, T., Griffin, J. H., Chow, N., Castellino, F. J., Stojanovic, K., Cleveland, D. W., & Zlokovic, B. V. (2009). Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. The Journal of Clinical Investigation, 119(11), 3437–3449. https://doi.org/10.1172/JCI38476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ziff, O. J., & Patani, R. (2019). Harnessing cellular aging in human stem cell models of amyotrophic lateral sclerosis. Aging Cell, 18(1), e12862. https://doi.org/10.1111/acel.12862.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by National Natural Science Foundation of China (No.81272080, 81000011 and 81000835), Science and Technological Project of Shenzhen (No. JC201005280429A, JCYJ20120613101917373), Natural Science Foundation of Guangdong Province (No. 2016A030313797).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Pan or Sa Cai.

Ethics declarations

Conflict of Interest

The authors indicate no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Pan, Y. & Cai, S. Patient-Specific Cells for Modeling and Decoding Amyotrophic Lateral Sclerosis: Advances and Challenges. Stem Cell Rev and Rep 16, 482–502 (2020). https://doi.org/10.1007/s12015-019-09946-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09946-8

Keywords

Navigation